

1.1 Approximating Areas

Clotilde Djuikem

January 23, 2024

Outline

1 Sigma Notation

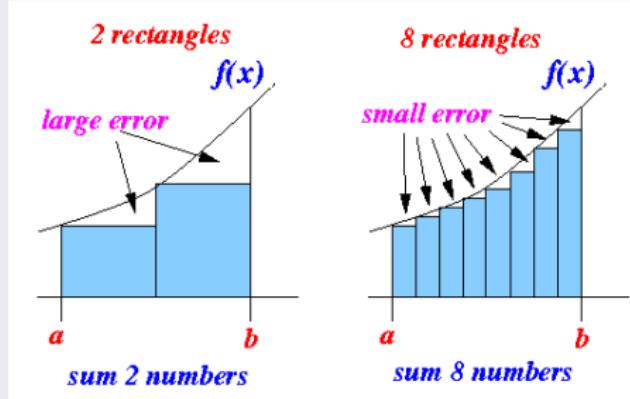
2 Approximating Area

3 Forming Riemann Sums

Motivation

Before

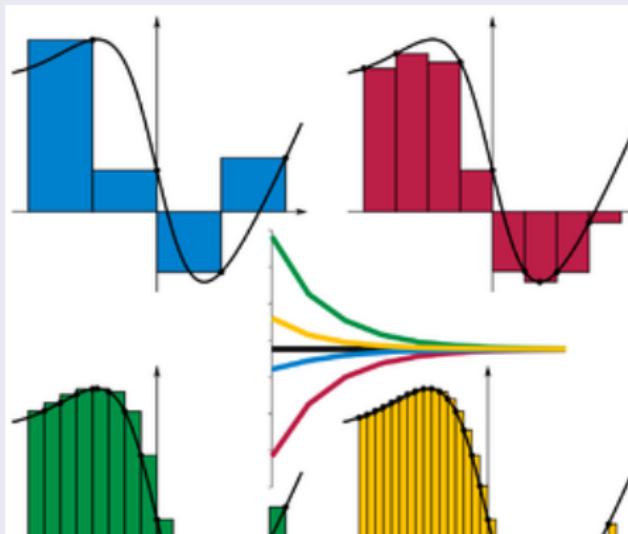
Imagine a bumpy field at a fair. We want to know how much space is there! Long ago, Archimedes used shapes to estimate areas. We do the same with rectangles. More rectangles mean a better guess.



Motivation

Today

Why do we do this? Think of planning a music festival. Calculating areas helps us organize spaces better. It is like having a secret tool for cool designs! We are learning these tricks to solve real-world puzzles someday. Is not that cool?



Learning Objectives

Objective 1

Use the sigma (summation) notation to calculate sums and powers of integers.

Objective 2

Use the sum of rectangular areas to approximate the area under a curve.

Objective 3

Use Riemann sums to approximate the area.

Sigma (Summation) Notation

In calculus, we use **sigma** (Σ) notation to make adding up lots of numbers easier.

Notation

For example, instead of writing $1 + 2 + 3 + \dots + 19 + 20$, we simply write $\sum_{i=1}^{20} i$.

Sigma notation looks like $\sum_{i=m}^n a_i$, where a_i are the terms to be added, i is the index of summation, and $m \leq n$ are the limits.

Let's try a couple of examples using sigma notation.

Example for Sigma

Using Sigma Notation

- ① Write in sigma notation and evaluate the sum of terms 3^i for $i = 1, 2, 3, 4, 5$.
- ② Write the sum in sigma notation: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$.
- ③ Write in sigma notation and evaluate the sum of terms 2^i for $i=3,4,5,6$.

Example for Sigma

Using Sigma Notation

- ① Write in sigma notation and evaluate the sum of terms 3^i for $i = 1, 2, 3, 4, 5$.
- ② Write the sum in sigma notation: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$.
- ③ Write in sigma notation and evaluate the sum of terms 2^i for $i=3,4,5,6$.

Solution

- ① We have $\sum_{i=1}^5 3^i = 3 + 3^2 + 3^3 + 3^4 + 3^5 = 363$.
- ② Using sigma notation, this sum can be written as $\sum_{i=1}^5 \frac{1}{i^2}$.

Properties of Sigma Notation

Notation

Let a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n represent two sequences of terms and let c be a constant. The following properties hold for all positive integers n and for integers k , with $1 \leq k < n$.

$$1. \sum_{i=1}^n c = nc,$$

$$2. \sum_{i=1}^n ca_i = c \sum_{i=1}^n a_i$$

$$3. \sum_{i=1}^n (a_i + b_i) = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i,$$

$$4. \sum_{i=1}^n (a_i - b_i) = \sum_{i=1}^n a_i - \sum_{i=1}^n b_i$$

$$5. \sum_{i=1}^n a_i = \sum_{i=1}^k a_i + \sum_{i=k+1}^n a_i$$

Sums of Powers of Integers: To keep in mind

The sum of the first n integers is given by

$$\sum_{i=1}^n i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

The sum of the squares of the first n integers is given by

$$\sum_{i=1}^n i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

The sum of the cubes of the first n integers is given by

$$\sum_{i=1}^n i^3 = 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4} = \left(\frac{n(n+1)}{2}\right)^2$$

Evaluation Using Sigma Notation

Write the following sums using sigma notation and then evaluate them.

- ① The sum of the terms $(i - 3)^2$ for $i = 1, 2, \dots, 200$.
- ② The sum of the terms $(i^3 - i^2)$ for $i = 1, 2, 3, 4, 5, 6$.

Solution 1

We expand $(i - 3)^2$, and then use properties of sigma notation along with the summation formulas to obtain

$$\begin{aligned}\sum_{i=1}^{200} (i - 3)^2 &= \sum_{i=1}^{200} (i^2 - 6i + 9) \\&= \sum_{i=1}^{200} i^2 - \sum_{i=1}^{200} 6i + \sum_{i=1}^{200} 9 \quad (\text{properties 3 and 4}) \\&= \sum_{i=1}^{200} i^2 - 6 \sum_{i=1}^{200} i + \sum_{i=1}^{200} 9 \quad (\text{property 2}) \\&= \frac{200(200+1)(400+1)}{6} - 6 \left[\frac{200(200+1)}{2} \right] + 9(200) \\&= 2,686,700 - 120,600 + 1800 \\&= 2,567,900\end{aligned}$$

Solution 2

We use sigma notation property 4 and the formulas for the sum of squared terms and the sum of cubed terms to obtain

$$\begin{aligned}\sum_{i=1}^6 (i^3 - i^2) &= \sum_{i=1}^6 i^3 - \sum_{i=1}^6 i^2 \\&= \frac{6^2(6+1)^2}{4} - \frac{6(6+1)(2(6)+1)}{6} \\&= \frac{1764}{4} - \frac{546}{6} \\&= 350\end{aligned}$$

Problem

Find the sum of the values of $(4 + 3i)$ for $i = 1, 2, \dots, 100$.

Answer: 15,550

Hint: Use the properties of sigma notation to solve the problem.

Finding the Sum of the Function Values

Find the sum of the values of $f(x) = x^3$ over the integers $1, 2, 3, \dots, 10$.

Finding the Sum of the Function Values

Find the sum of the values of $f(x) = x^3$ over the integers $1, 2, 3, \dots, 10$.

Solution:

$$\begin{aligned}\sum_{i=1}^{10} i^3 &= \frac{(10)^2(10+1)^2}{4} \\ &= \frac{100 \times 121}{4} \\ &= 3025.\end{aligned}$$

Finding the Sum of a Linear Function

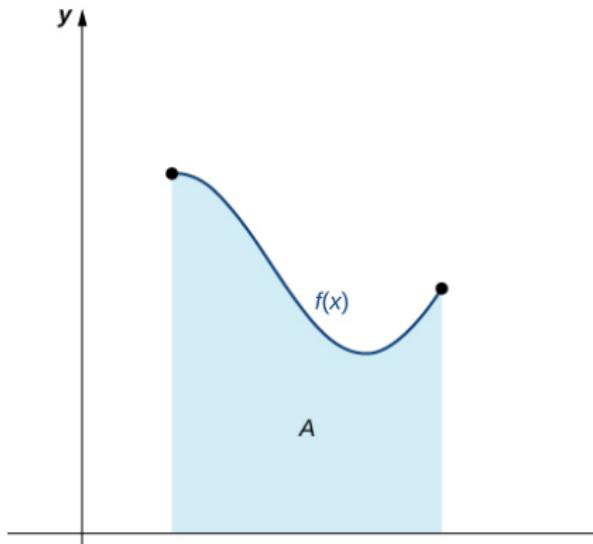
Let $f(x) = 2x + 1$. Evaluate the sum $\sum_{k=1}^{20} f(k)$.

Answer: 440

Hint: Use the rules of sums and formulas for the sum of integers.

Problem

Now that we have the necessary notation, we return to the problem at hand: approximating the area under a curve. Let $f(x)$ be a continuous, nonnegative function defined on the closed interval $[a, b]$. We want to approximate the area A of the region under the curve $y = f(x)$, above the x -axis, and between the lines $x=a$ and $x=b$, as shown on the figure below.



Idea

To approximate the area under the curve, we use a geometric approach. We divide the region into many small shapes, approximate each of them with a rectangle that has a known area formula, and then sum the areas of rectangles to obtain a reasonable estimate of the area of the region. We begin by dividing the interval $[a, b]$ into subintervals.

Definition

Consider an interval $[a, b]$. A set of points $P = \{x_i\}_{i=1}^n$ with $a = x_0 < x_1 < x_2 < \dots < x_n = b$, which divides the interval $[a, b]$ into subintervals $[x_0, x_1]$, $[x_1, x_2]$, \dots , $[x_{n-1}, x_n]$ is called a partition of $[a, b]$. If all the subintervals have the same width, the set of points forms a regular partition of the interval $[a, b]$.

For the regular partition, the width of each subinterval is denoted by Δx , so that

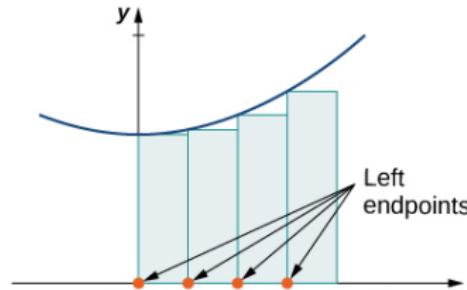
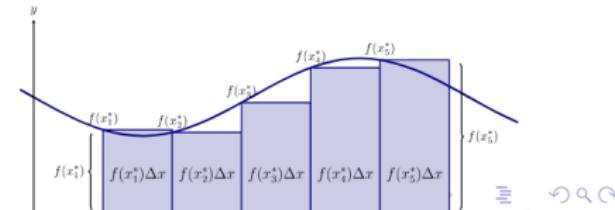
subinterval

The subinterval $\Delta x = \frac{b-a}{n}$ and then $x_i = x_0 + i\Delta x$ for $i = 1, 2, 3, \dots, n$

Left-Endpoint Approximation

On each subinterval $[x_{i-1}, x_i]$ ($i = 1, 2, 3, \dots, n$), construct a rectangle with a width of Δx and a height of $f(x_{i-1})$, the function value at the left endpoint of the subinterval. This ensures that the left upper corner of the rectangle belongs to the curve $y = f(x)$ (see Figure 2 below). This rectangle approximates the region below the graph of f over the subinterval $[x_{i-1}, x_i]$, and its area is $f(x_{i-1})\Delta x$.

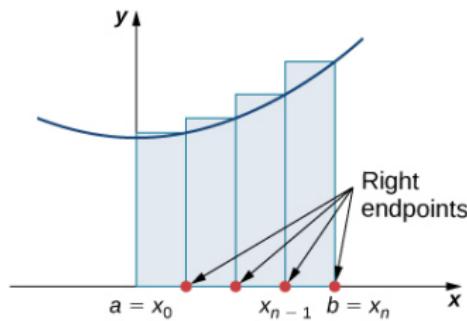
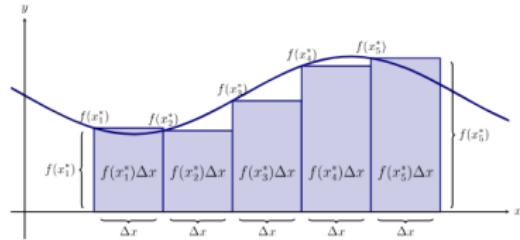
$$A \approx L_n = f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x = \sum_{i=1}^n f(x_{i-1})\Delta x$$



Right-Endpoint Approximation

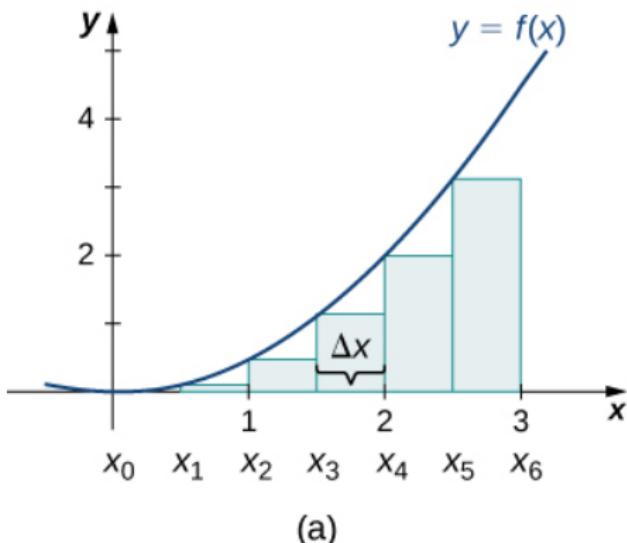
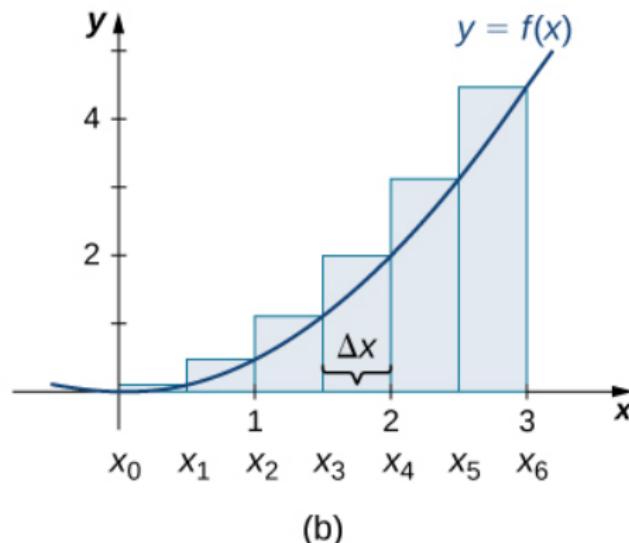
Construct a rectangle on each subinterval $[x_{i-1}, x_i]$ ($i = 1, 2, 3, \dots, n$) with the height of $f(x_i)$, the function value at the right endpoint of the subinterval. This ensures that the right upper corner of the rectangle belongs to the curve $y = f(x)$ (see Figure 3 below).

$$A \approx R_n = f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x = \sum_{i=1}^n f(x_i)\Delta x.$$



Frame Title

In this Figure, the area of the region below the graph of the function $f(x) = \frac{x^2}{2}$ over the interval $[0, 3]$ is approximated using left- and right-endpoint approximations with six rectangles.



Left-Endpoint Approximation

In this case, $\Delta x = \frac{3 - 0}{6} = 0.5$, and the subintervals are $[0, 0.5]$, $[0.5, 1]$, $[1, 1.5]$, $[1.5, 2]$, $[2, 2.5]$, $[2.5, 3]$, that is, $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1$, $x_3 = 1.5$, $x_4 = 2$, $x_5 = 2.5$, and $x_6 = 3$. Using the left-approximation formula for L_n , we obtain

$$\begin{aligned} A \approx L_6 &= \sum_{i=1}^6 f(x_{i-1})\Delta x \\ &= f(x_0)\Delta x + f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x + f(x_5)\Delta x \\ &= f(0) \cdot 0.5 + f(0.5) \cdot 0.5 + f(1) \cdot 0.5 + f(1.5) \cdot 0.5 + f(2) \cdot 0.5 + f(2.5) \cdot 0.5 \\ &= 0 \cdot 0.5 + 0.125 \cdot 0.5 + 0.5 \cdot 0.5 + 1.125 \cdot 0.5 + 2 \cdot 0.5 + 3.125 \cdot 0.5 \\ &= 0 + 0.0625 + 0.25 + 0.5625 + 1 + 1.5625 \\ &= 3.4375. \end{aligned}$$

Right-Endpoint Approximation

Using the right-approximation formula for R_n , we obtain

$$\begin{aligned} A &\approx R_6 = \sum_{i=1}^6 f(x_i) \Delta x \\ &= f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + f(x_4) \Delta x + f(x_5) \Delta x + f(x_6) \Delta x \\ &= f(0.5) \cdot 0.5 + f(1) \cdot 0.5 + f(1.5) \cdot 0.5 + f(2) \cdot 0.5 + f(2.5) \cdot 0.5 + f(3) \cdot 0.5 \\ &= 0.125 \cdot 0.5 + 0.5 \cdot 0.5 + 1.125 \cdot 0.5 + 2 \cdot 0.5 + 3.125 \cdot 0.5 + 4.5 \cdot 0.5 \\ &= 0.0625 + 0.25 + 0.5625 + 1 + 1.5625 + 2.25 \\ &= 5.6875. \end{aligned}$$

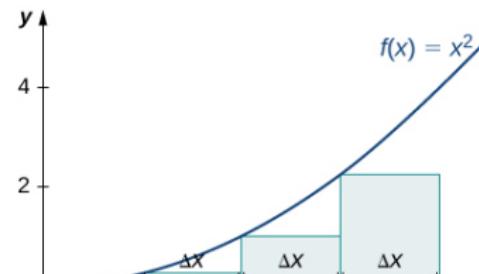
Approximating the Area Under a Curve

Use both left- and right-endpoint approximations to approximate the area under the graph of $f(x) = x^2$ over the interval $[0, 2]$ using $n = 4$.

Solution - Left-Endpoint Approximation

First, divide the interval $[0, 2]$ into n equal subintervals. Using $n = 4$, $\Delta x = \frac{(2-0)}{4} = 0.5$. This is the width of each rectangle. The intervals $[0, 0.5]$, $[0.5, 1]$, $[1, 1.5]$, $[1.5, 2]$ are shown in Figure 5. Using the left-endpoint approximation, the heights are $f(0) = 0$, $f(0.5) = 0.25$, $f(1) = 1$, $f(1.5) = 2.25$. Then,

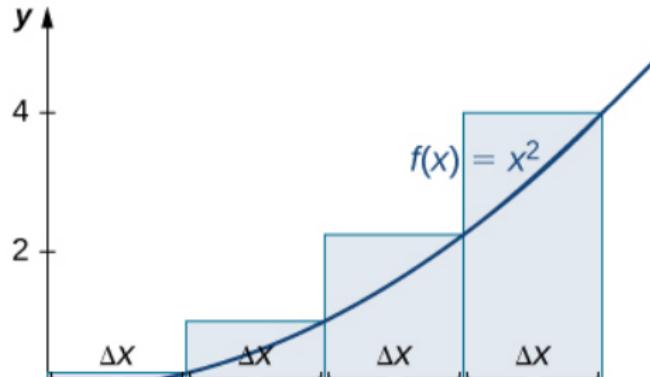
$$\begin{aligned}L_4 &= f(x_0)\Delta x + f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x \\&= 0 \cdot 0.5 + 0.25 \cdot 0.5 + 1 \cdot 0.5 + 2.25 \cdot 0.5 \\&= 1.75.\end{aligned}$$



Solution: Right-Endpoint Approximation

The right-endpoint approximation is shown in Figure 6. The intervals are the same, $\Delta x = 0.5$, but now we use the right endpoints to calculate the heights of the rectangles. We have

$$\begin{aligned}R_4 &= f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x \\&= 0.25 \cdot 0.5 + 1 \cdot 0.5 + 2.25 \cdot 0.5 + 4 \cdot 0.5 \\&= 3.75.\end{aligned}$$

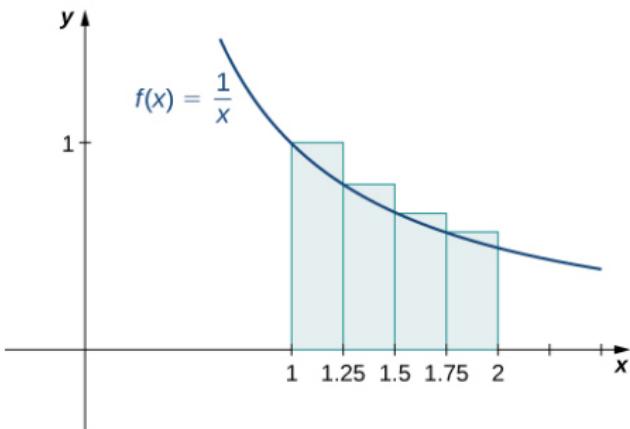


Sketch Left- and Right-Endpoint Approximations

Sketch left- and right-endpoint approximations for $f(x) = \frac{1}{x}$ on $[1, 2]$ using $n = 4$. Approximate the area using both methods.

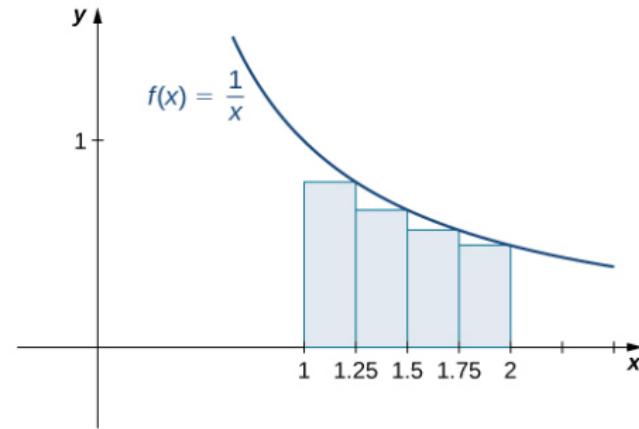
Solution The left-endpoint approximation is 0.7595. The right-endpoint approximation is 0.6345. See the figure below.

Left-Endpoint Approximation



(a)

Right-Endpoint Approximation



(b)

Generalizing Approximations

So far, to approximate the area under a curve, we have been using rectangles with the heights determined by evaluating the function at either the left or the right endpoint of the subinterval $[x_{i-1}, x_i]$. However, we could evaluate the function at any point x_i^* in $[x_{i-1}, x_i]$, and use $f(x_i^*)$ as the height of the approximating rectangle. This would result in an estimate $A \approx \sum_{i=1}^n f(x_i^*)\Delta x$.

Riemann Sum

Let the function $f(x)$ be defined on a closed interval $[a, b]$ and let P be a regular partition of $[a, b]$ with the subinterval width Δx . For each $1 \leq i \leq n$, let x_i^* be an arbitrary point in $[x_{i-1}, x_i]$. The numbers $x_1^*, x_2^*, \dots, x_n^*$ are called the sample points. Then the Riemann sum for $f(x)$ that corresponds to the partition P and the set of sample points $\{x_i^*\}_{i=1}^n$ is defined as

$$\sum_{i=1}^n f(x_i^*) \Delta x.$$

Definition: Area Under the Curve

Let $f(x)$ be a continuous, nonnegative function on an interval $[a, b]$, and let $\sum_{i=1}^n f(x_i^*)\Delta x$ be a Riemann sum for $f(x)$. Then, the area under the curve $y = f(x)$ over $[a, b]$ is given by

$$A = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i^*)\Delta x.$$

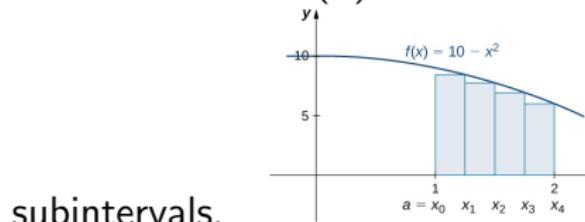
Finding Lower Sums

Problem: Find the lower sum for $f(x) = 10 - x^2$ over $[1, 2]$ with $n = 4$

subintervals.

Finding Lower Sums

Problem: Find the lower sum for $f(x) = 10 - x^2$ over $[1, 2]$ with $n = 4$



subintervals.

Solution:

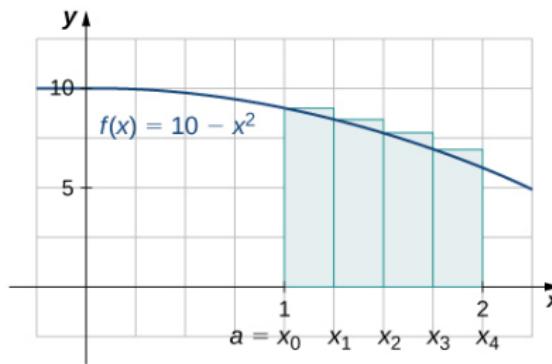
$$\Delta x = \frac{2 - 1}{4} = \frac{1}{4},$$

$$R_4 = \sum_{k=1}^4 (10 - x_i^2) \cdot 0.25$$

$$\begin{aligned} &= 0.25 [8.4375 + 7.75 + 6.9375 + 6] \\ &= 7.28. \end{aligned}$$

Hence, the lower sum is 7.28.

Finding Upper Sums

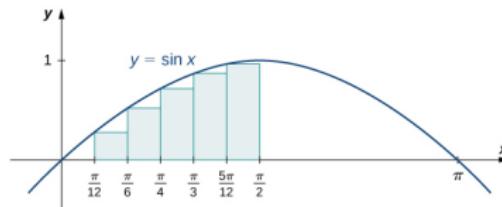


Hence, the upper sum is 8.0313.

Hint: $f(x)$ is decreasing on $[1, 2]$, so the maximum function values occur at the left endpoints of the subintervals.

Finding Lower Sums

Problem: Find the lower sum for $f(x) = \sin(x)$ over $[0, \pi/2]$ with $n = 6$ subintervals.



Solution:

$$\Delta x = \frac{\pi/2 - 0}{6} = \frac{\pi}{12},$$

$$\begin{aligned} L_6 &= \frac{\pi}{12} \left[0 + \sin\left(\frac{\pi}{12}\right) + \frac{1}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} + \sin\left(\frac{5\pi}{12}\right) \right] \\ &= \frac{\pi(1 + \sqrt{2} + \sqrt{3} + \sqrt{6})}{24}. \end{aligned}$$

Finding Upper Sums

Problem: Find the upper sum for $f(x) = \sin(x)$ over $[0, \pi/2]$ with $n = 6$ subintervals.

Solution:

$$\Delta x = \frac{\pi/2 - 0}{6} = \frac{\pi}{12},$$

$$R_6 = \frac{\pi(3 + \sqrt{2} + \sqrt{3} + \sqrt{6})}{24}.$$

Hint: Compare the expressions for the upper and lower sums.

1.2 The Definite Integral

Clotilde Djuikem

January 23, 2024

Outline

- 1 Definition and Notation
- 2 Evaluating Definite Integrals
- 3 Net Signed Area
- 4 Comparison Properties of Integrals

Learning Objectives

- ① State the definition of the definite integral.
- ② Explain the terms integrand, limits of integration, and variable of integration.
- ③ Explain when a function is integrable.
- ④ Describe the relationship between the definite integral and net area.
- ⑤ Use geometry and the properties of definite integrals to evaluate them.
- ⑥ Calculate the average value of a function.

Reminder

In the preceding section, we defined the area under a curve in terms of Riemann sums:

$$A = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i^*) \Delta x.$$

However, this definition came with restrictions. We required $f(x)$ to be continuous and nonnegative.

Extension of the concept

Real-world problems often do not adhere to these restrictions. In this section, we explore extending the concept of the area under the curve to a wider range of functions using the definite integral.

Definition

If $f(x)$ is a function defined on an interval $[a, b]$, the definite integral of f from a to b is given by

$$\int_a^b f(x) dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i^*) \Delta x,$$

provided the limit exists.

If this limit exists, the function $f(x)$ is said to be integrable on $[a, b]$, or is an integrable function.

Definition

If $f(x)$ is a function defined on an interval $[a, b]$, the definite integral of f from a to b is given by

$$\int_a^b f(x) dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i^*) \Delta x,$$

provided the limit exists.

If this limit exists, the function $f(x)$ is said to be integrable on $[a, b]$, or is an integrable function.

Notation

The function $f(x)$ is the integrand, and the dx called the variable of integration. Note that, like the index in a sum, the variable of integration is a dummy variable, and has no impact on the computation of the integral.

Theorem

We could use any variable we like as the variable of integration:

$$\int_a^b f(x) \, dx = \int_a^b f(t) \, dt = \int_a^b f(u) \, du$$

Theorem

If $f(x)$ is continuous on $[a, b]$, then f is integrable on $[a, b]$.

Remark

Functions that are not continuous on $[a, b]$ may still be integrable, depending on the nature of the discontinuities. For example, functions with a finite number of jump discontinuities on a closed interval are integrable.

Evaluation of Definite Integral

Problem: Evaluate $\int_0^2 x^2 dx$ using the definition of the definite integral.
Utilize a right-endpoint approximation to generate the Riemann sum.

Evaluation of Definite Integral

Problem: Evaluate $\int_0^2 x^2 dx$ using the definition of the definite integral.
Utilize a right-endpoint approximation to generate the Riemann sum.

Solution:

$$\Delta x = \frac{b-a}{n} = \frac{2}{n}, \quad \text{where } a = 0, b = 2$$

$$x_i = \frac{2i}{n}, \quad \text{for } i = 1, 2, \dots, n; \quad f(x_i) = \left(\frac{2i}{n}\right)^2 = \frac{4i^2}{n^2}$$

$$\sum_{i=1}^n f(x_i) \Delta x = \frac{8}{n^3} \sum_{i=1}^n i^2 = \frac{8}{n^3} \left[\frac{n(n+1)(2n+1)}{6} \right] = \frac{8}{n^3} \left[\frac{2n^3 + 3n^2 + n}{6} \right]$$

To calculate the definite integral, take the limit as $n \rightarrow \infty$:

$$\int_0^2 x^2 dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \rightarrow \infty} \left(\frac{8}{3} + \frac{4}{n} + \frac{1}{6n^2} \right) = \frac{8}{3}$$

Evaluation of Definite Integral

Problem: Evaluate $\int_0^3 (2x - 1) dx$ using the definition of the definite integral. Utilize a right-endpoint approximation to generate the Riemann sum.

Evaluation of Definite Integral

Problem: Evaluate $\int_0^3 (2x - 1) dx$ using the definition of the definite integral. Utilize a right-endpoint approximation to generate the Riemann sum. **Solution:**

$$\Delta x = \frac{b - a}{n} = \frac{3}{n}, \quad \text{where } a = 0, b = 3; \quad x_i = \frac{3i}{n}, \text{ for } i = 1, 2, \dots, n$$

$$f(x_i) = 2x_i - 1 = 2\left(\frac{3i}{n}\right) - 1 = \frac{6i}{n} - 1$$

$$\begin{aligned} \sum_{i=1}^n f(x_i) \Delta x &= \frac{18}{n^2} \sum_{i=1}^n i - \frac{3}{n} \sum_{i=1}^n 1 = \frac{18}{n^2} \left[\frac{n(n+1)}{2} \right] - \frac{3}{n} \sum_{i=1}^n 1 \\ &= \frac{18}{n^2} \left[\frac{n^2 + n}{2} \right] - \frac{3}{n}(n) = \frac{18}{2} + \frac{18}{2n} - 3 \end{aligned}$$

$$\int_0^3 (2x - 1) dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \rightarrow \infty} \left(\frac{18}{2} + \frac{18}{2n} - 3 \right) = 6$$

Evaluation of Definite Integral

Problem: Set up an expression for $\int_0^3 (e^x - 1) dx$. Use the right endpoint and do not evaluate.

Evaluation of Definite Integral

Problem: Set up an expression for $\int_0^3 (e^x - 1) dx$. Use the right endpoint and do not evaluate. **Solution:**

$$\Delta x = \frac{b - a}{n} = \frac{3}{n}, \quad \text{where } a = 0, b = 3$$

$$x_i = \frac{3i}{n}, \quad \text{for } i = 1, 2, \dots, n$$

$$f(x_i) = e^{x_i} - 1 = e^{\frac{3i}{n}} - 1$$

$$\sum_{i=1}^n f(x_i) \Delta x = \frac{3}{n} \sum_{i=1}^n \left(e^{\frac{3i}{n}} - 1 \right)$$

To calculate the definite integral, take the limit as $n \rightarrow \infty$:

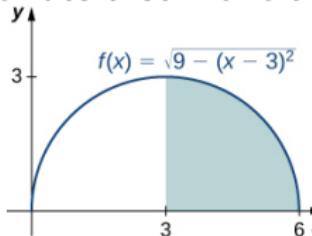
$$\int_0^3 (e^x - 1) dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i) \Delta x = \lim_{n \rightarrow \infty} \left[\frac{3}{n} \sum_{i=1}^n \left(e^{\frac{3i}{n}} - 1 \right) \right]$$

Using Geometric Formulas to Calculate Definite Integrals

Problem: Use the formula for the area of a circle to evaluate

$$\int_3^6 \sqrt{9 - (x - 3)^2} dx.$$

Solution: The function describes a semicircle with radius 3. To find



we want to find the area under the curve over the interval $[3, 6]$. The formula for the area of a circle is $A = \pi r^2$. The area of a semicircle is just one-half the area of a circle, or $A = \left(\frac{1}{2}\right) \pi r^2$. The shaded area in the above Figure covers one-half of the semicircle, or $A = \left(\frac{1}{4}\right) \pi r^2$.

$$\int_3^6 \sqrt{9 - (x - 3)^2} dx = \frac{1}{4} \pi (3)^2 = \frac{9}{4} \pi$$

Using Geometric Formulas to Calculate Definite Integrals

Problem: Use the formula for the area of a trapezoid to evaluate $\int_2^4 (2x + 3) dx$.

Solution: The given function represents the height of a trapezoid. To find the area under the curve over the interval $[2, 4]$, we can use the formula for the area of a trapezoid:

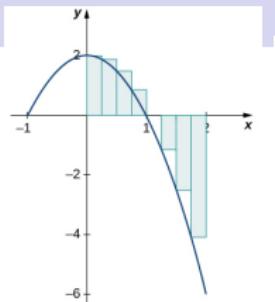
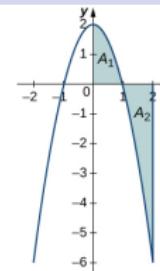
$$A = \frac{1}{2}h(b_1 + b_2)$$

where h is the height and b_1, b_2 are the bases.

Substituting the values:

$$A = \frac{1}{2}(3)(2 + (2 \cdot 4 + 3)) = 18 \text{ square units}$$

Net Area



$$\sum_{i=1}^n f(x_i^*) \Delta x = (\text{Area of rectangles above the } x\text{-axis})$$

– (Area of rectangles below the x -axis)

Net signed and total area

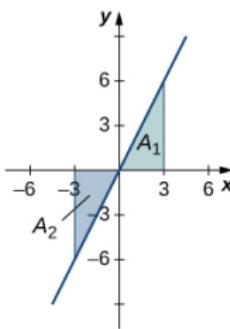
In the case where the function is integrable on $[a, b]$

$$\int_a^b f(x) dx = A_1 - A_2 \text{ and } \int_a^b |f(x)| dx = A_1 + A_2.$$

Finding the Net Signed Area

Problem: $f(x) = 2x$ and the x-axis over the interval $[-3, 3]$.

Solution: The function produces a straight line that forms two triangles: one from $x = -3$ to $x = 0$ and the other from $x = 0$ to $x = 3$,



Using the geometric formula for the area of a triangle, $A = \frac{1}{2}bh$, the area of triangle A_1 , above the axis, is $A_1 = \frac{1}{2}(3)(6) = 9$. The area of triangle A_2 , below the axis, is $A_2 = \frac{1}{2}(3)(6) = 9$. Thus, the net area is

$$\int_{-3}^3 2x \, dx = A_1 - A_2 = 9 - 9 = 0.$$

Properties of the Definite Integral

Suppose that the functions f and g are integrable over all given intervals.

$$\int_a^a f(x) dx = 0; \quad \int_b^a f(x) dx = - \int_a^b f(x) dx$$

$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

$$\int_a^b [f(x) - g(x)] dx = \int_a^b f(x) dx - \int_a^b g(x) dx$$

$$\int_a^b kf(x) dx = k \int_a^b f(x) dx$$

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Using the Properties of the Definite Integral

Problem: Express $\int_{-2}^1 (-3x^3 + 2x + 2) dx$ as the sum of three definite integrals using the properties of the definite integral.

Solution: Using integral notation, we have

$$\int_{-2}^1 (-3x^3 + 2x + 2) dx.$$

We apply properties 3 and 5 to get

$$\begin{aligned}\int_{-2}^1 (-3x^3 + 2x + 2) dx &= \int_{-2}^1 -3x^3 dx + \int_{-2}^1 2x dx + \int_{-2}^1 2 dx \\ &= -3 \int_{-2}^1 x^3 dx + 2 \int_{-2}^1 x dx + \int_{-2}^1 2 dx.\end{aligned}$$

Using the Properties of the Definite Integral

Problem: Express $\int_1^3 (6x^3 - 4x^2 + 2x - 3) dx$ as the sum of four definite integrals using the properties of the definite integral.

Using the Properties of the Definite Integral

Problem: Express $\int_1^3 (6x^3 - 4x^2 + 2x - 3) dx$ as the sum of four definite integrals using the properties of the definite integral. **Solution:** Using integral notation, we have

$$\int_1^3 (6x^3 - 4x^2 + 2x - 3) dx.$$

We apply properties to express it as the sum of four definite integrals:

$$\int_1^3 (6x^3 - 4x^2 + 2x - 3) dx = 6 \int_1^3 x^3 dx - 4 \int_1^3 x^2 dx + 2 \int_1^3 x dx - \int_1^3 3 dx$$

Using the Properties of the Definite Integral

Problem: If it is known that $\int_0^8 f(x) dx = 10$ and $\int_0^5 f(x) dx = 5$, find the value of $\int_5^8 f(x) dx$.

Solution: By property 6,

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Thus,

$$\int_0^8 f(x) dx = \int_0^5 f(x) dx + \int_5^8 f(x) dx$$

$$10 = 5 + \int_5^8 f(x) dx$$

$$5 = \int_5^8 f(x) dx.$$

Using the Properties of the Definite Integral

Problem: If it is known that $\int_1^5 f(x) dx = -3$ and $\int_2^5 f(x) dx = 4$, find the value of $\int_1^2 f(x) dx$.

Solution: By property 6,

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Thus,

$$\int_1^5 f(x) dx = \int_1^2 f(x) dx + \int_2^5 f(x) dx$$

$$-3 = \int_1^2 f(x) dx + 4$$

$$-7 = \int_1^2 f(x) dx.$$

Comparison Theorem

Suppose that the functions $f(x)$ and $g(x)$ are integrable over the interval $[a, b]$.

If $f(x) \geq 0$ for $a \leq x \leq b$, then

$$\int_a^b f(x) dx \geq 0.$$

If $f(x) \geq g(x)$ for $a \leq x \leq b$, then

$$\int_a^b f(x) dx \geq \int_a^b g(x) dx.$$

If m and M are constants such that $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$m(b - a) \leq \int_a^b f(x) dx$$

$$\leq M(b - a).$$

Comparing Integrals over a Given Interval

Problem: Compare the integrals of the functions $f(x) = \sqrt{1 + x^2}$ and $g(x) = \sqrt{1 + x}$ over the interval $[0, 1]$.

Solution: Comparing functions $f(x)$ and $g(x)$ when $x \in [0, 1]$. Since $1 + x^2 \geq 0$ and $1 + x \geq 0$ for $x \in [0, 1]$, comparing $\sqrt{1 + x^2}$ and $\sqrt{1 + x}$ is equivalent to comparing the expressions $(1 + x^2)$ and $(1 + x)$ under the roots on $[0, 1]$. We consider :

$$(1 + x^2) - (1 + x) = 1 + x^2 - 1 - x = x^2 - x = x(x - 1).$$

Since $x \geq 0$ and $x - 1 \leq 0$ on $[0, 1]$, we have that $x(x - 1) \leq 0$ on $[0, 1]$. It follows that $1 + x^2 \leq 1 + x$ on $[0, 1]$, and hence

$$f(x) = \sqrt{1 + x^2} \leq \sqrt{1 + x} = g(x), \quad x \in [0, 1].$$

Since both functions $f(x)$ and $g(x)$ are continuous on $[0, 1]$,

$$\int_0^1 f(x) \, dx \leq \int_0^1 g(x) \, dx.$$

Definition

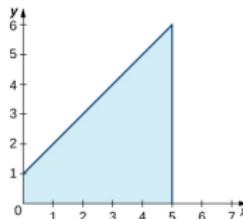
Let $f(x)$ be continuous over the interval $[a, b]$. Then, the average value of the function $f(x)$ (denoted by f_{ave}) on $[a, b]$ is given by

$$f_{\text{ave}} = \frac{1}{b-a} \int_a^b f(x) dx.$$

Finding the Average Value of a Linear Function

Problem: Find the average value of $f(x) = x + 1$ over the interval $[0, 5]$.

Solution: First, graph the function on the stated interval, as shown below.



The region is a trapezoid lying on its side, so we can use the area formula for a trapezoid $A = \frac{1}{2}h(a + b)$, where h represents height, and a and b represent the two parallel sides. Then,

$$\int_0^5 (x + 1) \, dx = \frac{1}{2}h(a + b) = \frac{1}{2} \cdot 5 \cdot (1 + 6) = \frac{35}{2}.$$

Thus, the average value of the function is

$$\frac{1}{5} \int_0^5 (x + 1) \, dx = \frac{1}{5} \cdot \frac{35}{2} = \frac{7}{2}.$$

Finding the Average Value of a Linear Function

Problem: Find the average value of $f(x) = 6 - 2x$ over the interval $[0, 3]$.

Solution: Use the average value formula and geometry to evaluate the integral. First, note that the function is a linear function, representing a downward-sloping line.

Apply the average value formula:

$$\text{Average Value} = \frac{1}{b-a} \int_a^b f(x) dx.$$

$$\int_0^3 (6 - 2x) dx = \frac{1}{3-0} \int_0^3 (6 - 2x) dx$$

$$= \frac{1}{3} [6x - x^2]_0^3$$

$$= \frac{1}{3} [(18 - 9) - (0 - 0)]$$

$$= \frac{9}{3} = 3.$$

1.3 The Fundamental Theorem of Calculus

Clotilde Djuikem

January 30, 2024

Outline

- 1 The Mean Value Theorem for Integrals
- 2 Fundamental Theorem of Calculus Part 1: Integrals and Antiderivatives
- 3 Antiderivatives and Indefinite Integrals
- 4 Fundamental Theorem of Calculus, Part 2: The Evaluation Theorem

Learning Objectives

- ① Describe the meaning of the Mean Value Theorem for Integrals.
- ② State the meaning of the Fundamental Theorem of Calculus, Part 1.
- ③ Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
- ④ Review the notions of an Antiderivative and an Indefinite Integral, the Table of Antiderivatives, and the Properties of Indefinite Integrals.
- ⑤ State the meaning of the Fundamental Theorem of Calculus, Part 2.
- ⑥ Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
- ⑦ Explain the relationship between differentiation and integration.

Mean Value Theorem for Integrals

If $f(x)$ is continuous over an interval $[a, b]$, then there is at least one point $c \in [a, b]$ such that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx.$$

This formula can also be stated as

$$\int_a^b f(x) dx = f(c) \cdot (b-a).$$

Proof

Since $f(x)$ is continuous on $[a, b]$, by the extreme value theorem, it assumes min and max values m and M , on $[a, b]$. $\forall x$ in $[a, b]$, we have $m \leq f(x) \leq M$. Therefore, by the comparison theorem, we have

$$m(b - a) \leq \int_a^b f(x) dx \leq M(b - a).$$

Dividing by $b - a$ gives us

$$m \leq \frac{1}{b - a} \int_a^b f(x) dx \leq M.$$

Since $\frac{1}{b-a} \int_a^b f(x) dx$ is a number between m and M , and since $f(x)$ is continuous and assumes the values m and M over $[a, b]$, by the Intermediate Value Theorem, there is a number c in $[a, b]$ such that

$$f(c) = \frac{1}{b - a} \int_a^b f(x) dx,$$

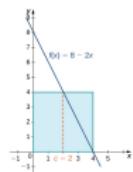
Finding the Average Value of a Function

Find the average value of the function $f(x) = 8 - 2x$ on $[0, 4]$ and find c such that $f(c)$ equals the average value of the function over $[0, 4]$.

Solution

The formula states the mean value of $f(x)$ is given by

$$\frac{1}{4-0} \int_0^4 (8 - 2x) dx.$$



The area of the triangle is $A = \frac{1}{2}(\text{base})(\text{height})$. We have

$$A = \frac{1}{2}(4)(8) = 16.$$

The average value is found by multiplying the area by $\frac{1}{4-0}$. Thus, the

$$\text{average value of the function is } \frac{1}{4}(16) = 4.$$

Set the average value equal to $f(c)$ and solve for c .

$$8 - 2c = 4, \quad c = 2 \quad \text{Then Atc} = 2, \quad f(2) = 4.$$

Finding Average Value - Solution (Part 1)

Problem: Find the average value of the function $f(x) = \frac{x}{2}$ over the interval $[0, 6]$ and find c such that $f(c)$ equals the average value of the function over $[0, 6]$.

Solution: The formula for the mean value of $f(x)$ over the interval $[a, b]$ is given by

$$\text{Average value} = \frac{1}{b-a} \int_a^b f(x) dx.$$

For this problem, $a = 0$, $b = 6$, and $f(x) = \frac{x}{2}$. Therefore,

$$\text{Average value} = \frac{1}{6-0} \int_0^6 \frac{x}{2} dx.$$

Finding Average Value - Solution (Part 2)

Solving the integral,

$$\text{Average value} = \frac{1}{6} \left[\frac{x^2}{4} \right]_0^6 = \frac{1}{6} \left(\frac{36}{4} - \frac{0}{4} \right) = \frac{1}{6} \cdot 9 = 1.5.$$

To find c such that $f(c)$ equals the average value, we set up the equation $f(c) = 1.5$:

$$\frac{c}{2} = 1.5.$$

Solving for c ,

$$c = 3.$$

Therefore, the average value is 1.5, and c is 3.

Fundamental Theorem of Calculus, Part 1

If $f(x)$ is continuous over an interval $[a, b]$, and the function $F(x)$ is defined by

$$F(x) = \int_a^x f(t)dt, \text{ then } F'(x) = f(x) \text{ over } [a, b].$$

Proof: Applying the definition of the derivative, we have

$$F'(x) = \lim_{h \rightarrow 0} \frac{1}{h} \int_x^{x+h} f(t)dt.$$

we see that $\frac{1}{h} \int_x^{x+h} f(t)dt$ is just the average value of the function $f(x)$ on $[x, x + h]$. Therefore, by the mean value theorem for integrals, there is some number c in $[x, x + h]$ such that

$$\frac{1}{h} \int_x^{x+h} f(x) dx = f(c).$$

Since c approaches x as h approaches zero, and $f(x)$ is continuous, we have

$$\lim_{h \rightarrow 0} f(c) = \lim_{c \rightarrow x} f(c) = f(x).$$

Putting all these pieces together, we have

$$F'(x) = \lim_{h \rightarrow 0} \frac{1}{h} \int_x^{x+h} f(x) dx = \lim_{h \rightarrow 0} f(c) = f(x),$$

and the proof is complete. \square

Finding a Derivative with the Fundamental Theorem of Calculus

Problem: Find the derivative of $g(x) = \int_1^x \frac{1}{t^3+1} dt$.

Solution

According to the Fundamental Theorem of Calculus, the derivative is given by

$$g'(x) = \frac{1}{x^3 + 1}.$$

Using the Fundamental Theorem of Calculus, Part 1

Problem: Use the Fundamental Theorem of Calculus, Part 1, to find the derivative of $g(r) = \int_0^r \sqrt{x^2 + 4} dx$.

Answer

$$g'(r) = \sqrt{r^2 + 4}.$$

Using the Fundamental Theorem and the Chain Rule

Problem: Let $F(x) = \int_1^{\sqrt{x}} \sin(t) dt$. Find $F'(x)$.

Fundamental Theorem of Calculus and the Chain Rule:

Let $F(x) = \int_a^{u(x)} f(t) dt$ be a function defined by an integral, where $u(x)$ is differentiable. Then, $F'(x) = f(u(x)) \cdot u'(x)$.

Using the Fundamental Theorem and the Chain Rule

Problem: Let $F(x) = \int_1^{\sqrt{x}} \sin(t) dt$. Find $F'(x)$.

Fundamental Theorem of Calculus and the Chain Rule:

Let $F(x) = \int_a^{u(x)} f(t) dt$ be a function defined by an integral, where $u(x)$ is differentiable. Then, $F'(x) = f(u(x)) \cdot u'(x)$.

Solution

Letting $u(x) = \sqrt{x}$, we have $F(x) = \int_1^{u(x)} \sin(t) dt$. Thus, by the Fundamental Theorem of Calculus and the chain rule,

$$F'(x) = \sin(u(x)) \frac{du}{dx} = \sin(u(x)) \cdot \left(\frac{1}{2}x^{-1/2}\right) = \frac{\sin\sqrt{x}}{2\sqrt{x}}.$$

Fundamental Theorem of Calculus and the Chain Rule

Problem: Let $F(x) = \int_1^{x^3} \cos(t) dt$. Find $F'(x)$.

Solution

Let $u(x) = x^3$. Then, $F(x) = \int_1^{u(x)} \cos(t) dt$. According to the Fundamental Theorem of Calculus and the Chain Rule,

$$F'(x) = \cos(u(x)) \cdot u'(x).$$

Now, compute the derivatives:

$$u'(x) = 3x^2 \quad \text{and} \quad \cos(u(x)) = \cos(x^3).$$

Therefore, $F'(x) = 3x^2 \cdot \cos(x^3)$.

Using the Fundamental Theorem of Calculus with Two Variable Limits

Problem: Let $F(x) = \int_x^{2x} t^3 dt$. Find $F'(x)$.

Solution

Since both limits of integration are variable, we split it into two integrals:

$$F(x) = \int_x^0 t^3 dt + \int_0^{2x} t^3 dt = - \int_0^x t^3 dt + \int_0^{2x} t^3 dt.$$

Differentiating the first term:

$$\frac{d}{dx} \left[- \int_0^x t^3 dt \right] = -x^3.$$

solution Part 2

Solution

Thus,

$$\begin{aligned}F'(x) &= \frac{d}{dx} \left[- \int_0^x t^3 dt \right] + \frac{d}{dx} \left[\int_0^{2x} t^3 dt \right] \\&= -x^3 + 16x^3 \\&= 15x^3.\end{aligned}$$

Finding the Derivative

Problem: Let $F(x) = \int_x^{x^2} \cos(t) dt$. Find $F'(x)$.

Solution

We have $F(x) = \int_x^{x^2} \cos(t) dt$. To find $F'(x)$, we apply the Fundamental Theorem of Calculus.

$$F'(x) = \cos(x^2) \cdot (x^2)' - \cos(x) \cdot (x)' = 2x \cos(x^2) - \cos(x).$$

Therefore,

$$F'(x) = 2x \cos(x^2) - \cos(x).$$

Definition: Antiderivative

A function F is an antiderivative of the function f over an interval I if $F'(x) = f(x)$ for all x in I .

- Unlike the derivative, if an antiderivative of a given function exists, it is not unique.
- If F is an antiderivative of f over an interval I , then the set of all antiderivatives of f over I , also called the most general antiderivative of f over I , has the form $F(x) + C$, where $C \in \mathbb{R}$ is an arbitrary constant.

The indefinite integral $\int f(x) dx$ is the notation used for the most general antiderivative of the function f on its domain:

$$\int f(x) dx = F(x) + C,$$

where F is any particular antiderivative of f on its domain, and C is an arbitrary constant.

Integration and Differentiation Formulas part 1

Differentiation Formulas:

$$\frac{d}{dx}(k) = 0$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(a^x) = a^x \ln(a) \quad \text{for } a > 0, a \neq 1$$

$$\frac{d}{dx}(\sin(x)) = \cos(x)$$

$$\frac{d}{dx}(\cos(x)) = -\sin(x)$$

Indefinite Integrals:

$$\int k \, dx = kx + C$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1$$

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

$$\int e^x \, dx = e^x + C$$

$$\int a^x \, dx = \frac{a^x}{\ln(a)} + C \quad \text{for } a > 0, a \neq 1$$

$$\int \cos(x) \, dx = \sin(x) + C$$

$$\int \sin(x) \, dx = -\cos(x) + C$$

Integration and Differentiation Formulas part 2

Differentiation Formulas:

$$\frac{d}{dx}(\tan(x)) = \sec^2(x)$$

$$\frac{d}{dx}(\csc(x)) = -\csc(x) \cot(x)$$

$$\frac{d}{dx}(\sec(x)) = \sec(x) \tan(x)$$

$$\frac{d}{dx}(\cot(x)) = -\csc^2(x)$$

$$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\sec^{-1}|x|) = \frac{1}{x\sqrt{x^2-1}}$$

Indefinite Integrals:

$$\int \sec^2(x) dx = \tan(x) + C$$

$$\int \csc x \cot(x) dx = -\csc(x) + C$$

$$\int \sec x \tan(x) dx = \sec(x) + C$$

$$\int \csc^2(x) dx = -\cot(x) + C$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + C$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1}(x) + C$$

$$\int \frac{1}{\sqrt{x^2-1}} dx = \sec^{-1}|x| + C$$

Properties of Indefinite Integrals

Sum and Difference Rules:

$$\int (f(x) \pm g(x)) \, dx = F(x) \pm G(x) + C$$

Constant Multiple Rule:

$$\int (k \cdot f(x)) \, dx = k \cdot F(x) + C$$

Note

There are **NO** product and quotient rules for indefinite integrals.

Evaluation: $\int (5x^3 - 7x^2 + 3x + 4) dx$

$$\int (5x^3 - 7x^2 + 3x + 4) dx = \frac{5}{4}x^4 - \frac{7}{3}x^3 + \frac{3}{2}x^2 + 4x + C$$

Evaluation: $\int \frac{x^2 + 4\sqrt[3]{x}}{x} dx$

$$\int \frac{x^2 + 4\sqrt[3]{x}}{x} dx = \frac{1}{2}x^2 + 12x^{1/3} + C$$

Evaluation: $\int \frac{4}{1+x^2} dx$

$$\int \frac{4}{1+x^2} dx = 4\tan^{-1}(x) + C$$

Evaluation: $\int \tan(x) \cos(x) dx$

$$\int \tan(x) \cos(x) dx = -\cos(x) + C$$

Problem

Evaluate the following indefinite integral:

$$\int (4x^3 - 5x^2 + e^x - 7) dx$$

Solution

Using the properties of indefinite integrals together with an antiderivative of a power function and the exponential function, we obtain

$$\int (4x^3 - 5x^2 + e^x - 7) dx = x^4 - \frac{5}{3}x^3 + e^x - 7x + C.$$

The Fundamental Theorem of Calculus, Part 2

If f is continuous over the interval $[a, b]$ and $F(x)$ is any antiderivative of $f(x)$ on $[a, b]$, then

$$\int_a^b f(x) dx = F(b) - F(a).$$

Proof

Let $P = \{x_i\}$, $i = 0, 1, \dots, n$ be a regular partition of $[a, b]$. Then, we can write

$$\begin{aligned} F(b) - F(a) &= F(x_n) - F(x_0) = [F(x_n) - F(x_{n-1})] + [F(x_{n-1}) - F(x_{n-2})] \\ &\quad + \dots + [F(x_1) - F(x_0)]. \end{aligned}$$

Proof of the Fundamental Theorem of Calculus, Part 2

Now, we know F is an antiderivative of f over $[a, b]$, and so F is an antiderivative of f over each $[x_{i-1}, x_i]$. Applying the Mean Value Theorem for integrals to f over $[x_{i-1}, x_i]$ for $i = 0, 1, \dots, n$, we can find c_i in $[x_{i-1}, x_i]$ such that

$$F(x_i) - F(x_{i-1}) = F'(c_i)(x_i - x_{i-1}) = f(c_i)\Delta x.$$

Then, substituting into the previous equation, we have

$$F(b) - F(a) = \sum_{i=1}^n f(c_i)\Delta x.$$

Taking the limit of both sides as $n \rightarrow \infty$, we obtain

$$F(b) - F(a) = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(c_i)\Delta x = \int_a^b f(x) dx.$$

Evaluating an Integral with the Fundamental Theorem of Calculus

Problem: Evaluate $\int_{-2}^2 (t^2 - 4) dt$.

Solution: Using the Fundamental Theorem of Calculus, we find the antiderivative and evaluate at the limits:

$$\begin{aligned}\int_{-2}^2 (t^2 - 4) dt &= \left(\frac{t^3}{3} - 4t \right) \Big|_{-2}^2 \\&= \left[\frac{2^3}{3} - 4(2) \right] - \left[\frac{(-2)^3}{3} - 4(-2) \right] \\&= \left(\frac{8}{3} - 8 \right) - \left(-\frac{8}{3} + 8 \right) \\&= \frac{8}{3} - 8 + \frac{8}{3} - 8 \\&= \frac{16}{3} - 16 = -\frac{32}{3}.\end{aligned}$$

Evaluating a Definite Integral Using the Fundamental Theorem of Calculus, Part 2

Problem: Evaluate $\int_1^9 \frac{x-1}{\sqrt{x}} dx$ using the Fundamental Theorem of Calculus, Part 2.

Solution: First, eliminate the radical by rewriting the integral using rational exponents. Then, separate the numerator terms:

$$\int_1^9 \frac{x-1}{x^{1/2}} dx = \int_1^9 \left(x^{1/2} - x^{-1/2} \right) dx.$$

Now, integrate using the power rule for antiderivatives:

$$\begin{aligned} \int_1^9 \left(x^{1/2} - x^{-1/2} \right) dx &= \left(\frac{x^{3/2}}{\frac{3}{2}} - \frac{x^{1/2}}{\frac{1}{2}} \right) \bigg|_1^9 \\ &= \left[\frac{2}{3}(27) - 2(3) \right] - \left[\frac{2}{3}(1) - 2(1) \right] \\ &= 18 - 6 - \frac{2}{3} + 2 = \frac{40}{3}. \end{aligned}$$

$$\text{Evaluate } \int_1^2 x^{-4} dx$$

Problem: Evaluate the definite integral $\int_1^2 x^{-4} dx$.

Solution: To find the antiderivative, use the power rule for integration:

$$\begin{aligned}\int x^{-4} dx &= \frac{x^{-3}}{-3} + C \\ &= -\frac{1}{3x^3} + C.\end{aligned}$$

Now, apply the Fundamental Theorem of Calculus:

$$\begin{aligned}\int_1^2 x^{-4} dx &= \left[-\frac{1}{3x^3} \right]_1^2 \\ &= \left(-\frac{1}{3(2)^3} \right) - \left(-\frac{1}{3(1)^3} \right) \\ &= -\frac{1}{24} + \frac{1}{3} = \frac{7}{24}.\end{aligned}$$

Answer: $\int_1^2 x^{-4} dx = \frac{7}{24}$.

Roller-Skating Race: James vs. Kathy

James's Velocity: $f(t) = 5 + 2t$ ft/sec

To find James's total distance traveled, integrate $f(t)$ over the interval $[0, 5]$:

$$\begin{aligned}\int_0^5 (5 + 2t) dt &= \left[5t + \frac{1}{2}t^2 \right]_0^5 \\ &= (25 + 25) = 50 \text{ ft.}\end{aligned}$$

So, James has skated 50 ft after 5 seconds.

Roller-Skating Race: James vs. Kathy

Kathy's Velocity: $g(t) = 10 + \cos(t)$ ft/sec

To find Kathy's total distance traveled, integrate $g(t)$ over the interval $[0, 5]$:

$$\begin{aligned}\int_0^5 (10 + \cos(t)) dt &= [10t + \sin(t)]_0^5 \\ &= (50 + \sin(5)) - (0 - \sin 0) \\ &= 50 + \sin(5).\end{aligned}$$

Since $\pi < 5 < 2\pi$, $\sin(5) < 0$. Therefore, Kathy has skated a bit less than 50 ft after 5 seconds. James wins, but not by much!

Rematch: James vs. Kathy

Suppose James and Kathy have a rematch, but this time the contest is stopped after only 3 seconds. Let's evaluate the distances covered:

James's Velocity: $f(t) = 5 + 2t$ ft/sec

To find James's total distance in 3 seconds:

$$\begin{aligned}\int_0^3 (5 + 2t) dt &= \left[5t + \frac{1}{2}t^2 \right]_0^3 \\ &= \left(15 + \frac{9}{2} \right) = 24 \text{ ft.}\end{aligned}$$

Kathy's Velocity: $g(t) = 10 + \cos(t)$ ft/sec

To find Kathy's total distance in 3 seconds:

$$\begin{aligned}\int_0^3 (10 + \cos(t)) dt &= [10t + \sin(t)]_0^3 \\ &= (30 + \sin(3)) - (0 - \sin 0) \\ &= 30 + \sin(3).\end{aligned}$$

1.5 Substitution

January 30, 2024

Outline

1 1.5 Substitution

Learning Objectives

- Use substitution to evaluate indefinite integrals.
- Use substitution to evaluate definite integrals.

Substitution for Indefinite Integrals

Let $u = g(x)$, where $g'(x)$ is continuous, let $f(x)$ be continuous over the range of g , and let $F(x)$ be an antiderivative of $f(x)$. Then,

$$\int f(g(x))g'(x) \, dx = \int f(u) \, du = F(u) + C = F(g(x)) + C.$$

Proof

Let f , g , u , and F be as specified in the theorem. Then

$$\frac{d}{dx} \left(F(g(x)) \right) = F'(g(x))g'(x) = f(g(x))g'(x).$$

This means that $F(g(x))$ is an antiderivative of $f(g(x))g'(x)$ and hence

$$\int f(g(x))g'(x) dx = F(g(x)) + C.$$

Since $u = g(x)$ and F is an antiderivative of f , we have that

$F(g(x)) + C = F(u) + C = \int f(u) du$, which completes the proof. \square

Example: Substitution for Indefinite Integrals

Returning to the problem we looked at originally, we let $u = x^2 - 3$ and then $du = 2x \, dx$. Rewriting the integral in terms of u , we obtain:

$$\int \underbrace{(x^2 - 3)}_{u^3} \underbrace{(2x \, dx)}_{du} = \int u^3 \, du.$$

Using the power rule for integrals, we have

$$\int u^3 \, du = \frac{u^4}{4} + C.$$

Substituting the original expression for x back into the solution, we get:

$$\frac{u^4}{4} + C = \frac{(x^2 - 3)^4}{4} + C.$$

Problem-Solving Strategy: Integration by Substitution

Integration by Substitution

- ① Look carefully at the integrand and select an expression $g(x)$ within the integrand to set equal to u . Quite often, we select $g(x)$ so that $g'(x)$ is also part of the integrand.
- ② Substitute $u = g(x)$ and $du = g'(x) dx$ into the integral.
- ③ We should now be able to evaluate the integral with respect to u . If the integral can't be evaluated, we need to go back and select a different expression to use as u .
- ④ Evaluate the integral in terms of u .
- ⑤ Replace u with $g(x)$ to write the result in terms of x .

Using Substitution to Evaluate an Indefinite Integral

Problem: Evaluate $\int 6x(3x^2 + 4)^4 dx$.

Solution:

- ① Choose $u = 3x^2 + 4$, so $du = 6x dx$.
- ② Write the integral in terms of u :

$$\int 6x(3x^2 + 4)^4 dx = \int u^4 du.$$

- ③ Evaluate the integral with respect to u and then return to the variable x :

$$\int u^4 du = \frac{u^5}{5} + C = \frac{(3x^2 + 4)^5}{5} + C.$$

Analysis: The derivative of the result of integration confirms the correctness of our answer.

Using Substitution to Evaluate an Indefinite Integral

Problem: Evaluate $\int 3x^2(x^3 - 3)^2 dx$.

Solution:

- 1 Choose $u = x^3 - 3$, so $du = 3x^2 dx$.
- 2 Write the integral in terms of u :

$$\int 3x^2(x^3 - 3)^2 dx = \int u^2 du.$$

- 3 Evaluate the integral with respect to u and then return to the variable x :

$$\int u^2 du = \frac{u^3}{3} + C = \frac{(x^3 - 3)^3}{3} + C.$$

Answer:

$$\int 3x^2(x^3 - 3)^2 dx = \frac{1}{3}(x^3 - 3)^3 + C.$$

Using Substitution with Alteration

Problem: Evaluate $\int z\sqrt{z^2 - 5} dz$. **Solution:**

- ① Let $u = z^2 - 5$ and $du = 2z dz$. To match the integrand, multiply both sides of the du equation by $\frac{1}{2}$:

$$\frac{1}{2}du = z dz.$$

- ② Rewrite the integral in terms of u :

$$\int z\sqrt{z^2 - 5} dz = \int \sqrt{u} \cdot \frac{1}{2} du = \frac{1}{2} \int \sqrt{u} du.$$

- ③ Integrate the expression in u using the power rule:

$$\frac{1}{2} \int \sqrt{u} du = \frac{1}{2} \left(\frac{2}{3} \right) u^{3/2} + C = \frac{1}{3} u^{3/2} + C = \frac{1}{3} (z^2 - 5)^{3/2} + C.$$

Answer:

$$\int z\sqrt{z^2 - 5} dz = \frac{1}{3} (z^2 - 5)^{3/2} + C.$$

Use Substitution for Another Integral

Problem: Find the antiderivative of $\int x^2(x^3 + 5)^9 dx$.

Hint: Multiply the du equation by $\frac{1}{3}$.

Solution:

- ① Let $u = x^3 + 5$ and $du = 3x^2 dx$. To match the integrand, multiply both sides of the du equation by $\frac{1}{3}$:

$$\frac{1}{3}du = x^2 dx.$$

- ② Rewrite the integral in terms of u :

$$\int x^2(x^3 + 5)^9 dx = \int u^9 \cdot \frac{1}{3} du.$$

- ③ Integrate the expression in u using the power rule:

$$\int u^9 \cdot \frac{1}{3} du = \frac{1}{3} \cdot \frac{u^{10}}{10} + C = \frac{1}{30}u^{10} + C.$$

- ④ Substitute back $u = x^3 + 5$ to obtain the final antiderivative:

Using Substitution with Integrals of Trigonometric Functions

Problem: Evaluate the integral $\int \frac{\sin(t)}{\cos^3(t)} dt$. **Solution:**

- ① Rewrite the integral as $\int \frac{1}{\cos^3(t)} \cdot \sin(t) dt$.
- ② Let $u = \cos(t)$. Then, $du = -\sin(t) dt$, so $\sin(t) dt = -du$.
- ③ Substitute $-du$ for $\sin(t) dt$ and u for $\cos(t)$:

$$\int \frac{\sin(t)}{\cos^3(t)} dt = - \int \frac{1}{u^3} du.$$

- ④ Evaluate the integral in terms of u :

$$- \int \frac{1}{u^3} du = - \left(-\frac{1}{2} \right) u^{-2} + C = \frac{1}{2} u^{-2} + C.$$

- ⑤ Substitute $u = \cos(t)$ back into the expression:

$$\frac{1}{2} \cos^{-2}(t) + C = \frac{1}{2 \cos^2(t)} + C.$$

Using Substitution with Trigonometric Functions

Problem: Evaluate the integral $\int \cos(t) \cdot 2^{\sin(t)} dt$.

Solution:

- ① Let $u = \sin(t)$. Then, $du = \cos(t) dt$.
- ② Substitute u and du into the integral:

$$\int \cos(t) \cdot 2^{\sin(t)} dt = \int 2^u du.$$

- ③ Evaluate the integral with respect to u :

$$\int 2^u du = \frac{2^u}{\ln(2)} + C.$$

- ④ Substitute back $u = \sin(t)$:

$$\frac{2^{\sin(t)}}{\ln(2)} + C.$$

Basic Trigonometric Integrals with Substitution

$$\int \tan(x) \, dx = -\ln |\cos(x)| + C = \ln |\sec(x)| + C$$

$$\int \cot(x) \, dx = \ln |\sin(x)| + C$$

$$\int \sec(x) \, dx = \ln |\sec(x) + \tan(x)| + C$$

$$\int \csc(x) \, dx = -\ln |\csc(x) + \cot(x)| + C = \ln |\csc(x) - \cot(x)| + C$$

Evaluating an Indefinite Integral Using Substitution

Problem: Evaluate the integral $\int \frac{x}{\sqrt{x-1}} dx$ using substitution. **Solution:** If we let $u = x - 1$, then $du = dx$. But this does not account for the x in the numerator of the integrand. We need to express x in terms of u to complete the substitution. If $u = x - 1$, then $x = u + 1$. Now we can rewrite the integral in terms of u :

$$\begin{aligned}\int \frac{x}{\sqrt{x-1}} dx &= \int \frac{u+1}{\sqrt{u}} du \\ &= \int \left(\sqrt{u} + \frac{1}{\sqrt{u}} \right) du \\ &= \int \left(u^{1/2} + u^{-1/2} \right) du.\end{aligned}$$

Then we integrate in the usual way, replace u with the original expression, and factor and simplify the result. Thus,

$$\begin{aligned}\int \left(u^{1/2} + u^{-1/2} \right) du &= \frac{2}{3}u^{3/2} + 2u^{1/2} + C \\ &= \frac{2}{3}(x-1)^{3/2} + 2(x-1)^{1/2} + C.\end{aligned}$$

Using Substitution to Evaluate an Indefinite Integral

Problem: Evaluate the indefinite integral $\int t(1 - 2t)^7 dt$ using substitution.

Solution: Let $u = 1 - 2t$. Then, $du = -2 dt$ or $dt = -\frac{1}{2} du$. Substituting $u = 1 - 2t$ and $dt = -\frac{1}{2} du$ into the integral, we have:

$$\begin{aligned}\int t(1 - 2t)^7 dt &= -\frac{1}{2} \int t du = -\frac{1}{2} \int \frac{u}{-2} du = \frac{1}{4} \int u du \\&= \frac{1}{4} \cdot \frac{u^2}{2} + C = \frac{1}{8} u^2 + C = \frac{1}{8} (1 - 2t)^2 + C \\&= \frac{(1 - 2t)^2}{8} + C \\&= \frac{(1 - 2t)^9}{36} - \frac{(1 - 2t)^8}{32} + C.\end{aligned}$$

Substitution for Definite Integrals

Let $u = g(x)$, where $g'(x)$ is continuous over an interval $[a, b]$, and let f be continuous over the range of $u = g(x)$. Then,

$$\int_a^b f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.$$

Using Substitution to Evaluate a Definite Integral

Problem: Evaluate $\int_0^1 (x^3 + 1)e^{x^4 + 4x} dx$ using substitution.

Solution: Take $u = x^4 + 4x$. Then $du = (4x^3 + 4) dx = 4(x^3 + 1) dx$ and hence $(x^3 + 1) dx = \frac{1}{4} du$. To adjust the bounds of integration, note that $x = 0$ corresponds to $u = 0^4 + 4 \cdot 0 = 0$ and $x = 1$ corresponds to $u = 1^4 + 4 \cdot 1 = 5$. We then obtain

$$\int_0^1 (x^3 + 1)e^{x^4 + 4x} dx = \int_0^5 \frac{1}{4} e^u du = \frac{1}{4} e^u \bigg|_0^5 = \frac{e^5 - 1}{4}.$$

Using Substitution to Evaluate a Definite Integral

Problem: Evaluate $\int_1^e \frac{\ln(x)}{x} dx$ using substitution.

Solution: Take $u = \ln(x)$. Then $du = \frac{1}{x} dx$ and the bounds of integration transform as follows: $x = 1 \Rightarrow u = \ln(1) = 0$ and $x = e \Rightarrow u = \ln(e) = 1$. We rewrite the integral in terms of u :

$$\int_1^e \frac{\ln(x)}{x} dx = \int_0^1 u du.$$

Now, integrating the expression with respect to u , we get:

$$\int_0^1 u du = \frac{1}{2}u^2 \Big|_0^1 = \frac{1}{2}(1^2 - 0^2) = \frac{1}{2}.$$

Therefore, $\int_1^e \frac{\ln(x)}{x} dx = \frac{1}{2}$.

Using Substitution to Evaluate a Definite Integral

Problem: Evaluate $\int_{1/2}^1 \frac{\sin(\frac{1}{x})}{x^2} dx$ using substitution.

Solution: Let $u = \frac{1}{x} = x^{-1}$. Then $du = -\frac{1}{x^2} dx$ and $x = \frac{1}{2} \Rightarrow u = 2$, and $x = 1 \Rightarrow u = 1$. We rewrite the integral in terms of u :

$$\int_{1/2}^1 \frac{\sin(\frac{1}{x})}{x^2} dx = \int_2^1 \sin(u) \cdot (-1) du = (\cos(u)) \Big|_2^1 = \cos(1) - \cos(2).$$

Analysis: Note that the lower limit of integration was bigger than the upper limit in the integral in terms of u . This often happens when using substitution, and it's not an issue.

Answer: $\cos(1) - \cos(2)$

Using Substitution to Evaluate a Definite Integral (Cont'd)

Problem: Evaluate $\int_{\pi^2/16}^{\pi^2/9} \frac{\sec^2(\sqrt{x})}{\sqrt{x}} dx$ using substitution.

Solution: Take $u = \sqrt{x}$. Then $du = \frac{1}{2\sqrt{x}} dx$ implies that $dx = 2\sqrt{x}du$, $x = \pi^2/16 \Rightarrow u = \pi/4$, and $x = \pi^2/9 \Rightarrow u = \pi/3$. We rewrite the integral in terms of u :

$$\int_{\pi^2/16}^{\pi^2/9} \frac{\sec^2(\sqrt{x})}{\sqrt{x}} dx = \int_{1/4}^{1/3} 2\sec^2(u) du = 2\tan(u) \Big|_{\pi/4}^{\pi/3}.$$

Answer: $2(\tan(\pi/3) - \tan(\pi/4)) = 2(\sqrt{3} - 1)$

Evaluating a Definite Integral using Substitution

Problem: Evaluate $\int_0^1 x^5(1 - x^3)^4 dx$ using substitution.

Solution: Let $u = 1 - x^3$, then $du = -3x^2 dx$. We need to express $x^5 dx$ in terms of u : $x^5 dx = (1 - u) \left(-\frac{1}{3}\right) du$. Adjusting the limits, $x = 0 \Rightarrow u = 1$, and $x = 1 \Rightarrow u = 0$. We rewrite the integral in terms of u :

$$\begin{aligned}\int_0^1 x^5(1 - x^3)^4 dx &= -\frac{1}{3} \int_1^0 u^4(1 - u)du = -\frac{1}{3} \int_1^0 (u^4 - u^5)du \\ &= \left(-\frac{1}{3}\right) \left(\frac{u^5}{5} - \frac{u^6}{6}\right) \bigg|_1^0 \\ &= -\frac{1}{3} \left[(0 - 0) - \left(\frac{1}{5} - \frac{1}{6}\right)\right] \\ &= \frac{1}{90}.\end{aligned}$$

Evaluating a Definite Integral using Substitution (Cont'd)

Problem: Evaluate $\int_{-1}^0 \frac{y^3}{y^2+1} dy$ using substitution.

Solution: Take $u = y^2 + 1$. Then $du = 2ydy$, $y = -1 \Rightarrow u = 2$, and $y = 0 \Rightarrow u = 1$. We rewrite the integral in terms of u :

$$\int_{-1}^0 \frac{y^3}{y^2+1} dy = \int_0^2 ?? du.$$

Answer: $\frac{\ln(2)-1}{2}$

1.4 The Net Change Theorem and Integrals of Symmetric Functions

January 30, 2024

Outline

1 1.4 The Net Change Theorem and Integrals

Learning Objectives

- Explain the significance of the net change theorem.
- Use the net change theorem to solve applied problems.
- Apply the integrals of odd and even functions.

Net Change Theorem

The new value of a changing quantity equals the initial value plus the integral of the rate of change:

$$F(b) = F(a) + \int_a^b F'(x) dx$$

or

$$\int_a^b F'(x) dx = F(b) - F(a).$$

Net Change Theorem

The Net Change Theorem

$$\int_a^b F'(t)dt = \underbrace{F(b) - F(a)}$$

Rate of change
of $F(t)$

Final value -Initial Value
= Net change of $F(t)$ from $t = a$ to $t = b$

The integral of rate of change is the net change

Finding Net Displacement

Given a velocity function $v(t) = 3t - 5$ (in meters per second) for a particle in motion from time $t = 0$ to time $t = 3$, find the net displacement of the particle.

Solution:

Applying the net change theorem, we have

$$\int_0^3 (3t - 5) dt$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

Finding Net Displacement

Given a velocity function $v(t) = 3t - 5$ (in meters per second) for a particle in motion from time $t = 0$ to time $t = 3$, find the net displacement of the particle.

Solution:

Applying the net change theorem, we have

$$\begin{aligned}\int_0^3 (3t - 5) dt &= \frac{3t^2}{2} - 5t \Big|_0^3 = \left[\frac{3(3)^2}{2} - 5(3) \right] - 0 \\ &= \frac{27}{2} - 15 = \frac{27}{2} - \frac{30}{2} \\ &= -\frac{3}{2}.\end{aligned}$$

The net displacement is $-\frac{3}{2}$ meters.

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

Finding Total Distance Traveled

Given the velocity function $v(t) = 3t - 5$ m/sec over the time interval $[0, 3]$, we want to find the total distance traveled by the particle.

Solution: To find the total distance traveled, we integrate the absolute value of the velocity function:

$$\begin{aligned}\int_0^3 |v(t)| dt &= \int_0^{5/3} (-v(t)) dt + \int_{5/3}^3 v(t) dt = \int_0^{5/3} (5 - 3t) dt + \int_{5/3}^3 (3t - 5) dt \\ &= \left(5t - \frac{3t^2}{2}\right) \bigg|_0^{5/3} + \left(\frac{3t^2}{2} - 5t\right) \bigg|_{5/3}^3 \\ &= \left[5\left(\frac{5}{3}\right) - \frac{3\left(\frac{5}{3}\right)^2}{2}\right] + \left[\frac{27}{2} - 15\right] - \left[\frac{3\left(\frac{5}{3}\right)^2}{2} - \frac{25}{3}\right] \\ &= \frac{25}{3} - \frac{25}{6} + \frac{27}{2} - 15 - \frac{25}{6} + \frac{25}{3} = \frac{41}{6}.\end{aligned}$$

So, the total distance traveled is $\frac{41}{6}$ m.

Finding Net Displacement and Total Distance Traveled

Given the velocity function $f(t) = \frac{1}{2}e^t - 2$ over the interval $[0, 2]$, we want to find the net displacement and the total distance traveled by the particle.

Solution:

- ① **Net Displacement:** To find the net displacement, we apply the net change theorem:

$$\int_0^2 f(t) dt = \left[\frac{1}{2}e^t - 2t \right] \Big|_0^2 = \left[\frac{1}{2}e^2 - 4 \right] - \left[\frac{1}{2}e^0 - 0 \right] = \frac{1}{2}e^2 - 4 - \frac{1}{2}.$$

So, the net displacement is $\frac{1}{2}e^2 - \frac{9}{2}$ m.

- ② **Total Distance Traveled:** To find the total distance traveled, we integrate the absolute value of the velocity function:

$$\int_0^2 |f(t)| dt = \int_0^2 \left| \frac{1}{2}e^t - 2 \right| dt = ??.$$

How Many Gallons of Gasoline Are Consumed?

If the motor on a motorboat is started at $t = 0$ and the boat consumes gasoline at the rate of $(5 - t^3)$ gal/hr, how much gasoline is used in the first 2 hours?

How Many Gallons of Gasoline Are Consumed?

If the motor on a motorboat is started at $t = 0$ and the boat consumes gasoline at the rate of $(5 - t^3)$ gal/hr, how much gasoline is used in the first 2 hours?

Solution: Express the problem as a definite integral, integrate, and evaluate using the Fundamental Theorem of Calculus. The limits of integration are the endpoints of the interval $[0, 2]$. We have

How Many Gallons of Gasoline Are Consumed?

If the motor on a motorboat is started at $t = 0$ and the boat consumes gasoline at the rate of $(5 - t^3)$ gal/hr, how much gasoline is used in the first 2 hours?

Solution: Express the problem as a definite integral, integrate, and evaluate using the Fundamental Theorem of Calculus. The limits of integration are the endpoints of the interval $[0, 2]$. We have

$$\int_0^2 (5 - t^3) dt$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

How Many Gallons of Gasoline Are Consumed?

If the motor on a motorboat is started at $t = 0$ and the boat consumes gasoline at the rate of $(5 - t^3)$ gal/hr, how much gasoline is used in the first 2 hours?

Solution: Express the problem as a definite integral, integrate, and evaluate using the Fundamental Theorem of Calculus. The limits of integration are the endpoints of the interval $[0, 2]$. We have

$$\int_0^2 (5 - t^3) dt = \left(5t - \frac{t^4}{4} \right) \Big|_0^2 = \left[5(2) - \frac{(2)^4}{4} \right] - 0 = 10 - \frac{16}{4} = 6.$$

Thus, the motorboat uses 6 gal of gas in 2 hours.

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

Chapter Opener: Iceboats

Figure: Iceboat in action. (Credit: modification of work by Carter Brown, Flickr)

Andrew sets out. As he prepares his iceboat, the wind intensifies. During the first half-hour, the wind speed increases according to:

$$v(t) = \begin{cases} 20t + 5 & \text{for } 0 \leq t \leq \frac{1}{2} \\ 15 & \text{for } \frac{1}{2} \leq t \leq 1 \end{cases}$$

Recalling that Andrew's iceboat travels at twice the wind speed, and assuming he moves in a straight line away from his starting point, how far is Andrew from his starting point after 1 hour?

Solution

To figure out how far Andrew has traveled, we need to integrate his velocity, which is twice the wind speed. Then

$$\text{Distance} = \int_0^1 2v(t) dt.$$

$$\begin{aligned} \int_0^1 2v(t) dt &= \int_0^{\frac{1}{2}} 2v(t) dt + \int_{\frac{1}{2}}^1 2v(t) dt \\ &= \int_0^{\frac{1}{2}} 2(20t + 5) dt + \int_{\frac{1}{2}}^1 2(15) dt = \int_0^{\frac{1}{2}} (40t + 10) dt + \int_{\frac{1}{2}}^1 30 dt \\ &= [20t^2 + 10t] \Big|_0^{\frac{1}{2}} + [30t] \Big|_{\frac{1}{2}}^1 = \left(\frac{20}{4} + 5 \right) - 0 + (30 - 15) = 25. \end{aligned}$$

So Andrew is 25 miles from his starting point after 1 hour.

Andrew's Iceboating Outing

Suppose that, instead of remaining steady during the second half hour of Andrew's outing, the wind starts to die down according to the function

$$v(t) = \begin{cases} 20t + 5 & \text{for } 0 \leq t \leq \frac{1}{2} \\ -10t + 15 & \text{for } \frac{1}{2} \leq t \leq 1 \end{cases}$$

Under these conditions, how far from his starting point is Andrew after 1 hour?

$$\text{Distance} = \int_0^1 2v(t) dt.$$

Answer: 17.5 miles.

Integrals of Even and Odd Functions

Suppose that the function f is continuous over the interval $[-a, a]$.

If f is even:

$$\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$$

If f is odd:

$$\int_{-a}^a f(x) dx = 0$$

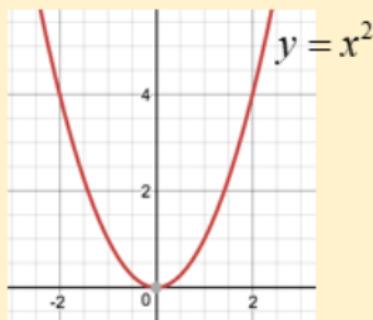
Even and odd functions

Even Functions

$$f(-x) = f(x)$$

Function is unchanged when reflected about the y-axis.

Example:

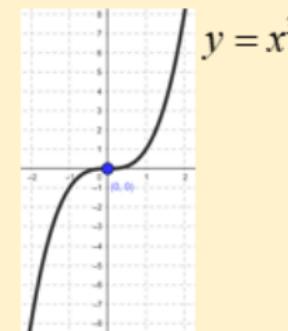


Odd Functions

$$f(-x) = -f(x)$$

Function is unchanged when rotated 180° about the origin.

Example:



Integrating an Even Function

Integrate the even function $\int_{-2}^2 (3x^8 - 2) dx$ and verify that the integration formula for even functions holds.

Solution:

First, we formally verify that the integrand function is even. Let $f(x) = 3x^8 - 2$. Then $f(-x) = 3(-x)^8 - 2 = 3x^8 - 2 = f(x)$, which precisely means that f is even. We then have

$$\begin{aligned}\int_{-2}^2 (3x^8 - 2) dx &= \left(\frac{x^9}{3} - 2x \right) \bigg|_{-2}^2 \\&= \left[\frac{2^9}{3} - 2(2) \right] - \left[\frac{(-2)^9}{3} - 2(-2) \right] \\&= \left(\frac{512}{3} - 4 \right) - \left(-\frac{512}{3} + 4 \right) \\&= \frac{1000}{3}.\end{aligned}$$

even functions

To verify the integration formula for even functions, we can calculate the integral from 0 to 2, then double it and check to make sure we get the same answer:

$$\begin{aligned}\int_0^2 (3x^8 - 2) dx &= \left(\frac{x^9}{3} - 2x \right) \bigg|_0^2 \\ &= \frac{512}{3} - 4 \\ &= \frac{500}{3}.\end{aligned}$$

Since $2 \times \frac{500}{3} = \frac{1000}{3}$, we have verified the formula for even functions in this particular example.

Integrating an Odd Function

Verify that the function $f(x) = \sin^3(x)(x^2 + 1)$ is odd and use this fact to evaluate the definite integral $\int_{-5}^5 f(x) dx$.

Solution:

Integrating an Odd Function

Verify that the function $f(x) = \sin^3(x)(x^2 + 1)$ is odd and use this fact to evaluate the definite integral $\int_{-5}^5 f(x) dx$.

Solution: Substituting $-x$ into f , we obtain

$$\begin{aligned}f(-x) &= \sin^3(-x)((-x)^2 + 1) \\&= (-\sin(x))^3(x^2 + 1) \\&= -\sin^3(x)(x^2 + 1) \\&= -f(x),\end{aligned}$$

which proves that f is odd. Because f is continuous over the whole real line as a product of a polynomial and a sine function, it is also continuous over $[-5, 5]$, and we can apply the above result to conclude that $\int_{-5}^5 \sin^3(x)(x^2 + 1) dx = 0$.

Using Properties of Symmetric Functions

Consider the function $f(x) = x^4$. This function is an even function because $f(-x) = (-x)^4 = x^4 = f(x)$ for all x . Since $f(x)$ is even, we can use the property of integrals of symmetric functions:

$$\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$$

where a is the interval length. Applying this property, we have:

$$\int_{-2}^2 x^4 dx = 2 \int_0^2 x^4 dx$$

Now, let's evaluate the integral $\int_0^2 x^4 dx$:

$$\int_0^2 x^4 dx = \left[\frac{x^5}{5} \right]_0^2 = \frac{2^5}{5} - \frac{0^5}{5} = \frac{32}{5}$$

Finally, multiply by 2 to get the value of $\int_{-2}^2 x^4 dx = 2 \times \frac{32}{5} = \frac{64}{5}$

Quiz: Integrating Even and Odd Functions

Problem 1: Determine if the following functions are even, odd, or neither:

- ① $f(x) = x^3 + 2$
- ② $g(x) = \sin(x) + \cos(x)$
- ③ $h(x) = e^x + e^{-x}$

Quiz: Integrating Even and Odd Functions

Problem 1: Determine if the following functions are even, odd, or neither:

- ① $f(x) = x^3 + 2$
- ② $g(x) = \sin(x) + \cos(x)$
- ③ $h(x) = e^x + e^{-x}$

Solution Problem 1:

- ① $f(x)$: Neither (not symmetric about the y-axis)
- ② $g(x)$: Neither (not symmetric about the origin)
- ③ $h(x)$: Even (symmetric about the y-axis)

Quiz: Is $f(x)$ an odd function, even function, or neither? s

Problem 1: Consider the function $f(x) = x^3 - x^2 + 4x + 2$.

Problem 2: Consider the function $f(x) = -x^2 + 10$.

Problem 3: Consider the function $f(x) = x^3 + 4x$.

Problem 4: Consider the function $f(x) = -x^3 + 5x - 2$.

Problem 5: Consider the function $f(x) = \sqrt{x^4} - x^2 + 4$.

Quiz: Is $f(x)$ an odd function, even function, or neither? s

Problem 1: Consider the function $f(x) = x^3 - x^2 + 4x + 2$.

① Neither

Problem 2: Consider the function $f(x) = -x^2 + 10$.

Problem 3: Consider the function $f(x) = x^3 + 4x$.

Problem 4: Consider the function $f(x) = -x^3 + 5x - 2$.

Problem 5: Consider the function $f(x) = \sqrt{x^4} - x^2 + 4$.

Quiz: Is $f(x)$ an odd function, even function, or neither? s

Problem 1: Consider the function $f(x) = x^3 - x^2 + 4x + 2$.

① Neither

Problem 2: Consider the function $f(x) = -x^2 + 10$.

① Even

Problem 3: Consider the function $f(x) = x^3 + 4x$.

Problem 4: Consider the function $f(x) = -x^3 + 5x - 2$.

Problem 5: Consider the function $f(x) = \sqrt{x^4} - x^2 + 4$.

Quiz: Is $f(x)$ an odd function, even function, or neither? s

Problem 1: Consider the function $f(x) = x^3 - x^2 + 4x + 2$.

① Neither

Problem 2: Consider the function $f(x) = -x^2 + 10$.

① Even

Problem 3: Consider the function $f(x) = x^3 + 4x$.

① Odd

Problem 4: Consider the function $f(x) = -x^3 + 5x - 2$.

Problem 5: Consider the function $f(x) = \sqrt{x^4} - x^2 + 4$.

Quiz: Is $f(x)$ an odd function, even function, or neither? s

Problem 1: Consider the function $f(x) = x^3 - x^2 + 4x + 2$.

① Neither

Problem 2: Consider the function $f(x) = -x^2 + 10$.

① Even

Problem 3: Consider the function $f(x) = x^3 + 4x$.

① Odd

Problem 4: Consider the function $f(x) = -x^3 + 5x - 2$.

① Neither

Problem 5: Consider the function $f(x) = \sqrt{x^4} - x^2 + 4$.

Quiz: Is $f(x)$ an odd function, even function, or neither? s

Problem 1: Consider the function $f(x) = x^3 - x^2 + 4x + 2$.

① Neither

Problem 2: Consider the function $f(x) = -x^2 + 10$.

① Even

Problem 3: Consider the function $f(x) = x^3 + 4x$.

① Odd

Problem 4: Consider the function $f(x) = -x^3 + 5x - 2$.

① Neither

Problem 5: Consider the function $f(x) = \sqrt{x^4} - x^2 + 4$.

① Even