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Sigma Notation Approximating Area Forming Riemann Sums

Motivation

Before

Imagine a bumpy field at a fair. We want to know how much space is
there! Long ago, Archimedes used shapes to estimate areas. We do the
same with rectangles. More rectangles mean a better guess.
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Sigma Notation Approximating Area Forming Riemann Sums

Motivation

Today

Why do we do this? Think of planning a music festival. Calculating areas
helps us organize spaces better. It is like having a secret tool for cool
designs! We are learning these tricks to solve real-world puzzles someday.
Is not that cool?
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Sigma Notation Approximating Area Forming Riemann Sums

Learning Objectives

Objective 1

Use the sigma (summation) notation to calculate sums and powers of
integers.

Objective 2

Use the sum of rectangular areas to approximate the area under a curve.

Objective 3

Use Riemann sums to approximate the area.
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Sigma Notation Approximating Area Forming Riemann Sums

Sigma (Summation) Notation

In calculus, we use sigma (Σ) notation to make adding up lots of numbers
easier.

Notation

For example, instead of writing 1 + 2 + 3 + . . .+ 19 + 20,

we simply write
20∑
i=1

i .

Sigma notation looks like
n∑

i=m
ai , where ai are the terms to be added, i is

the index of summation, and m ≤ n are the limits.
Let’s try a couple of examples using sigma notation.
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Sigma Notation Approximating Area Forming Riemann Sums

Example for Sigma

Using Sigma Notation

1 Write in sigma notation and evaluate the sum of terms 3i for
i = 1, 2, 3, 4, 5.

2 Write the sum in sigma notation: 1 + 1
4 + 1

9 + 1
16 + 1

25 .

3 Write in sigma notation and evaluate the sum of terms 2i for
i=3,4,5,6.

Solution

1 We have
∑5

i=1 3
i = 3 + 32 + 33 + 34 + 35 = 363.

2 Using sigma notation, this sum can be written as
5∑

i=1

1
i2
.
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Sigma Notation Approximating Area Forming Riemann Sums

Properties of Sigma Notation

Notation

Let a1, a2, . . . , an and b1, b2, . . . , bn represent two sequences of terms and
let c be a constant. The following properties hold for all positive integers n
and for integers k, with 1 ≤ k < n.

1.
n∑

i=1

c = nc , 2.
n∑

i=1

cai = c
n∑

i=1

ai

3.
n∑

i=1

(ai + bi ) =
n∑

i=1

ai +
n∑

i=1

bi , 4.
n∑

i=1

(ai − bi ) =
n∑

i=1

ai −
n∑

i=1

bi

5.
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai
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Sigma Notation Approximating Area Forming Riemann Sums

Sums of Powers of Integers: To keep in mind

The sum of the first n integers is given by
n∑

i=1

i = 1 + 2 + . . .+ n =
n (n + 1)

2

The sum of the squares of the first n integers is given by
n∑

i=1

i2 = 12 + 22 + . . .+ n2 =
n (n + 1) (2n + 1)

6

The sum of the cubes of the first n integers is given by
n∑

i=1

i3 = 13 + 23 + . . .+ n3 =
n2(n + 1)2

4
=

(
n(n + 1)

2

)2
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Sigma Notation Approximating Area Forming Riemann Sums

Evaluation Using Sigma Notation

Write the following sums using sigma notation and then evaluate them.

1 The sum of the terms (i − 3)2 for i = 1, 2, . . . , 200.

2 The sum of the terms
(
i3 − i2

)
for i = 1, 2, 3, 4, 5, 6.
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Sigma Notation Approximating Area Forming Riemann Sums

Solution 1

We expand (i − 3)2, and then use properties of sigma notation along with
the summation formulas to obtain

200∑
i=1

(i − 3)2 =
200∑
i=1

(
i2 − 6i + 9

)
=

200∑
i=1

i2 −
200∑
i=1

6i +
200∑
i=1

9 (properties 3 and 4)

=
200∑
i=1

i2 − 6
200∑
i=1

i +
200∑
i=1

9 (property 2)

=
200 (200 + 1) (400 + 1)

6
− 6

[
200 (200 + 1)

2

]
+ 9 (200)

= 2, 686, 700− 120, 600 + 1800

= 2, 567, 900
Clotilde Djuikem 1.1 Approximating Areas January 23, 2024 11 / 34



Sigma Notation Approximating Area Forming Riemann Sums

Solution 2

We use sigma notation property 4 and the formulas for the sum of squared
terms and the sum of cubed terms to obtain

6∑
i=1

(
i3 − i2

)
=

6∑
i=1

i3 −
6∑

i=1

i2

=
62(6 + 1)2

4
− 6 (6 + 1) (2 (6) + 1)

6

=
1764

4
− 546

6
= 350
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Sigma Notation Approximating Area Forming Riemann Sums

Problem

Find the sum of the values of (4 + 3i) for i = 1, 2, . . . , 100.

Answer: 15,550

Hint: Use the properties of sigma notation to solve the problem.
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Sigma Notation Approximating Area Forming Riemann Sums

Finding the Sum of the Function Values

Find the sum of the values of f (x) = x3 over the integers 1, 2, 3, . . . , 10.

Solution:
10∑
i=1

i3 = (10)2(10+1)2

4

= 100×121
4

= 3025.
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Sigma Notation Approximating Area Forming Riemann Sums

Finding the Sum of a Linear Function

Let f (x) = 2x + 1. Evaluate the sum
20∑
k=1

f (k).

Answer: 440

Hint: Use the rules of sums and formulas for the sum of integers.
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Sigma Notation Approximating Area Forming Riemann Sums

Problem

Now that we have the necessary notation, we return to the problem at
hand: approximating the area under a curve. Let f (x) be a continuous,
nonnegative function defined on the closed interval [a, b]. We want to
approximate the area A of the region under the curve y = f (x), above the
x-axis, and between the lines x=a and x=b, as shown on the figure below.
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Sigma Notation Approximating Area Forming Riemann Sums

Idea

To approximate the area under the curve, we use a geometric approach.
We divide the region into many small shapes, approximate each of them
with a rectangle that has a known area formula, and then sum the areas of
rectangles to obtain a reasonable estimate of the area of the region. We
begin by dividing the interval [a, b] into subintervals.
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Sigma Notation Approximating Area Forming Riemann Sums

Definition

Consider an interval [a, b]. A set of points P = {xi}ni=1 with
a = x0 < x1 < x2 < . . . < xn = b, which divides the interval [a, b] into
subintervals [x0, x1], [x1, x2], . . ., [xn−1, xn] is called a partition of [a, b]. If
all the subintervals have the same width, the set of points forms a regular
partition of the interval [a, b].
For the regular partition, the width of each subinterval is denoted by ∆x ,
so that

subinterval

The subinterval ∆x = b−a
n and then xi = x0 + i∆x for i = 1, 2, 3, . . . , n
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Sigma Notation Approximating Area Forming Riemann Sums

Left-Endpoint Approximation

On each subinterval [xi−1, xi ] (i = 1, 2, 3, . . . , n), construct a rectangle
with a width of ∆x and a height of f (xi−1), the function value at the left
endpoint of the subinterval. This ensures that the left upper corner of the
rectangle belongs to the curve y = f (x) (see Figure 2 below). This
rectangle approximates the region below the graph of f over the
subinterval [xi−1, xi ], and its area is f (xi−1)∆x .

A ≈ Ln = f (x0)∆x + f (x1)∆x + . . .+ f (xn−1)∆x =
n∑

i=1

f (xi−1)∆x
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Sigma Notation Approximating Area Forming Riemann Sums

Right-Endpoint Approximation

Construct a rectangle on each subinterval [xi−1, xi ] (i = 1, 2, 3, . . . , n) with
the height of f (xi ), the function value at the right endpoint of the
subinterval. This ensures that the right upper corner of the rectangle
belongs to the curve y = f (x) (see Figure 3 below).

A ≈ Rn = f (x1)∆x + f (x2)∆x + . . .+ f (xn)∆x =
n∑

i=1

f (xi )∆x .
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Sigma Notation Approximating Area Forming Riemann Sums

Frame Title

In this Figure, the area of the region below the graph of the function
f (x) = x2

2 over the interval [0, 3] is approximated using left- and
right-endpoint approximations with six rectangles.
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Sigma Notation Approximating Area Forming Riemann Sums

Left-Endpoint Approximation

In this case, ∆x =
3− 0

6
= 0.5, and the subintervals are [0, 0.5], [0.5, 1],

[1, 1.5], [1.5, 2], [2, 2.5], [2.5, 3], that is, x0 = 0, x1 = 0.5, x2 = 1,
x3 = 1.5, x4 = 2, x5 = 2.5, and x6 = 3. Using the left-approximation
formula for Ln, we obtain

A ≈ L6 =
6∑

i=1
f (xi−1)∆x

= f (x0)∆x + f (x1)∆x + f (x2)∆x + f (x3)∆x + f (x4)∆x + f (x5)∆x
= f (0) · 0.5 + f (0.5) · 0.5 + f (1) · 0.5 + f (1.5) · 0.5 + f (2) · 0.5 + f (2.5) · 0.5
= 0 · 0.5 + 0.125 · 0.5 + 0.5 · 0.5 + 1.125 · 0.5 + 2 · 0.5 + 3.125 · 0.5
= 0 + 0.0625 + 0.25 + 0.5625 + 1 + 1.5625
= 3.4375.
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Sigma Notation Approximating Area Forming Riemann Sums

Right-Endpoint Approximation

Using the right-approximation formula for Rn, we obtain

A ≈ R6 =
6∑

i=1
f (xi )∆x

= f (x1)∆x + f (x2)∆x + f (x3)∆x + f (x4)∆x + f (x5)∆x + f (x6)∆x
= f (0.5) · 0.5 + f (1) · 0.5 + f (1.5) · 0.5 + f (2) · 0.5 + f (2.5) · 0.5 + f (3) · 0.5
= 0.125 · 0.5 + 0.5 · 0.5 + 1.125 · 0.5 + 2 · 0.5 + 3.125 · 0.5 + 4.5 · 0.5
= 0.0625 + 0.25 + 0.5625 + 1 + 1.5625 + 2.25
= 5.6875.
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Sigma Notation Approximating Area Forming Riemann Sums

Approximating the Area Under a Curve

Use both left- and right-endpoint approximations to approximate the area
under the graph of f (x) = x2 over the interval [0, 2] using n = 4.
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Solution - Left-Endpoint Approximation

First, divide the interval [0, 2] into n equal subintervals. Using n = 4,

∆x = (2−0)
4 = 0.5. This is the width of each rectangle. The intervals

[0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2] are shown in Figure 5. Using the
left-endpoint approximation, the heights are f (0) = 0, f (0.5) = 0.25,
f (1) = 1, f (1.5) = 2.25. Then,

L4 = f (x0)∆x + f (x1)∆x + f (x2)∆x + f (x3)∆x

= 0 · 0.5 + 0.25 · 0.5 + 1 · 0.5 + 2.25 · 0.5
= 1.75.
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Sigma Notation Approximating Area Forming Riemann Sums

Solution: Right-Endpoint Approximation

The right-endpoint approximation is shown in Figure 6. The intervals are
the same, ∆x = 0.5, but now we use the right endpoints to calculate the
heights of the rectangles. We have

R4 = f (x1)∆x + f (x2)∆x + f (x3)∆x + f (x4)∆x

= 0.25 · 0.5 + 1 · 0.5 + 2.25 · 0.5 + 4 · 0.5
= 3.75.
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Sigma Notation Approximating Area Forming Riemann Sums

Sketch Left- and Right-Endpoint Approximations

Sketch left- and right-endpoint approximations for f (x) = 1
x on [1, 2] using

n = 4. Approximate the area using both methods.
Solution The left-endpoint approximation is 0.7595. The right-endpoint
approximation is 0.6345. See the figure below.
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Sigma Notation Approximating Area Forming Riemann Sums

Generalizing Approximations

So far, to approximate the area under a curve, we have been using
rectangles with the heights determined by evaluating the function at either
the left or the right endpoint of the subinterval [xi−1, xi ]. However, we
could evaluate the function at any point x∗i in [xi−1, xi ], and use f (x∗i ) as
the height of the approximating rectangle. This would result in an
estimate A ≈

∑n
i=1 f (x

∗
i )∆x .

Clotilde Djuikem 1.1 Approximating Areas January 23, 2024 28 / 34



Sigma Notation Approximating Area Forming Riemann Sums

Riemann Sum

Let the function f (x) be defined on a closed interval [a, b] and let P be a
regular partition of [a, b] with the subinterval width ∆x . For each
1 ≤ i ≤ n, let x∗i be an arbitrary point in [xi−1, xi ]. The numbers
x∗1 , x

∗
2 , . . . , x

∗
n are called the sample points. Then the Riemann sum for

f (x) that corresponds to the partition P and the set of sample points
{x∗i }ni=1 is defined as

n∑
i=1

f (x∗i )∆x .
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Sigma Notation Approximating Area Forming Riemann Sums

Definition: Area Under the Curve

Let f (x) be a continuous, nonnegative function on an interval [a, b], and
let

∑n
i=1 f (x

∗
i )∆x be a Riemann sum for f (x). Then, the area under the

curve y = f (x) over [a, b] is given by

A = lim
n→∞

n∑
i=1

f (x∗i )∆x .
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Sigma Notation Approximating Area Forming Riemann Sums

Finding Lower Sums

Problem: Find the lower sum for f (x) = 10− x2 over [1, 2] with n = 4

subintervals.

Solution:

∆x =
2− 1

4
=

1

4
,

R4 =
4∑

k=1

(10− x2i ) · 0.25

= 0.25 [8.4375 + 7.75 + 6.9375 + 6]

= 7.28.

Hence, the lower sum is 7.28.
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Sigma Notation Approximating Area Forming Riemann Sums

Finding Upper Sums

Hence, the upper sum is 8.0313.
Hint: f (x) is decreasing on [1, 2], so the maximum function values occur

at the left endpoints of the subintervals.
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Finding Lower Sums

Problem: Find the lower sum for f (x) = sin(x) over [0, π/2] with n = 6
subintervals.

Solution:

∆x =
π/2− 0

6
=

π

12
,

L6 =
π

12

[
0 + sin

( π

12

)
+

1

2
+

√
2

2
+

√
3

2
+ sin

(
5π

12

)]

=
π(1 +

√
2 +

√
3 +

√
6)

24
.
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Finding Upper Sums

Problem: Find the upper sum for f (x) = sin(x) over [0, π/2] with n = 6
subintervals.
Solution:

∆x =
π/2− 0

6
=

π

12
,

R6 =
π(3 +

√
2 +

√
3 +

√
6)

24
.

Hint: Compare the expressions for the upper and lower sums.
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Learning Objectives

1 State the definition of the definite integral.

2 Explain the terms integrand, limits of integration, and variable of
integration.

3 Explain when a function is integrable.

4 Describe the relationship between the definite integral and net area.

5 Use geometry and the properties of definite integrals to evaluate
them.

6 Calculate the average value of a function.
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Reminder

In the preceding section, we defined the area under a curve in terms of
Riemann sums:

A = lim
n→∞

n∑
i=1

f (x∗i )∆x .

However, this definition came with restrictions. We required f (x) to be
continuous and nonnegative.

Extension of the concept

Real-world problems often do not adhere to these restrictions. In this
section, we explore extending the concept of the area under the curve to a
wider range of functions using the definite integral.
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Definition

If f (x) is a function defined on an interval [a, b], the definite integral of f
from a to b is given by∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗i )∆x ,

provided the limit exists.

If this limit exists, the function f (x) is said to be integrable on [a, b], or is
an integrable function.

Notation

The function f (x) is the integrand, and the dx called the variable of
integration. Note that, like the index in a sum, the variable of integration
is a dummy variable, and has no impact on the computation of the
integral.

Clotilde Djuikem 1.2 The Definite Integral January 23, 2024 5 / 23



Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Definition

If f (x) is a function defined on an interval [a, b], the definite integral of f
from a to b is given by∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗i )∆x ,

provided the limit exists.

If this limit exists, the function f (x) is said to be integrable on [a, b], or is
an integrable function.

Notation

The function f (x) is the integrand, and the dx called the variable of
integration. Note that, like the index in a sum, the variable of integration
is a dummy variable, and has no impact on the computation of the
integral.

Clotilde Djuikem 1.2 The Definite Integral January 23, 2024 5 / 23



Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Theorem

We could use any variable we like as the variable of integration:

b∫
a

f (x) dx =

b∫
a

f (t) dt =

b∫
a

f (u) du

Theorem

If f (x) is continuous on [a, b], then f is integrable on [a, b].

Remark

Functions that are not continuous on [a, b] may still be integrable,
depending on the nature of the discontinuities. For example, functions with
a finite number of jump discontinuities on a closed interval are integrable.
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Evaluation of Definite Integral

Problem: Evaluate
∫ 2
0 x2 dx using the definition of the definite integral.

Utilize a right-endpoint approximation to generate the Riemann sum.

Solution:

∆x =
b − a

n
=

2

n
, where a = 0, b = 2

xi =
2i

n
, for i = 1, 2, . . . , n; f (xi ) =

(
2i

n

)2

=
4i2

n2

n∑
i=1

f (xi )∆x =
8

n3

n∑
i=1

i2 =
8

n3

[
n(n + 1)(2n + 1)

6

]
=

8

n3

[
2n3 + 3n2 + n

6

]

To calculate the definite integral, take the limit as n → ∞:∫ 2

0
x2 dx = lim

n→∞

n∑
i=1

f (xi )∆x = lim
n→∞

(
8

3
+

4

n
+

1

6n2

)
=

8

3
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Evaluation of Definite Integral

Problem: Evaluate
∫ 3
0 (2x − 1) dx using the definition of the definite

integral. Utilize a right-endpoint approximation to generate the Riemann
sum.

Solution:

∆x =
b − a

n
=

3

n
, where a = 0, b = 3; xi =

3i

n
, for i = 1, 2, . . . , n

f (xi ) = 2xi − 1 = 2

(
3i

n

)
− 1 =

6i

n
− 1

n∑
i=1

f (xi )∆x =
18

n2

n∑
i=1

i − 3

n

n∑
i=1

1 =
18

n2

[
n(n + 1)

2

]
− 3

n

n∑
i=1

1

=
18

n2

[
n2 + n

2

]
− 3

n
(n) =

18

2
+

18

2n
− 3

∫ 3

0
(2x − 1) dx = lim

n→∞

n∑
i=1

f (xi )∆x = lim
n→∞

(
18

2
+

18

2n
− 3

)
= 6
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Evaluation of Definite Integral

Problem: Set up and expression for
∫ 3
0 (e

x − 1) dx . Use the right endpoint
and do not evaluate.

Solution:

∆x =
b − a

n
=

3

n
, where a = 0, b = 3

xi =
3i

n
, for i = 1, 2, . . . , n

f (xi ) = exi − 1 = e
3i
n − 1

n∑
i=1

f (xi )∆x =
3

n

n∑
i=1

(
e

3i
n − 1

)
To calculate the definite integral, take the limit as n → ∞:∫ 3

0
(ex − 1) dx = lim

n→∞

n∑
i=1

f (xi )∆x = lim
n→∞

[
3

n

n∑
i=1

(
e

3i
n − 1

)]
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Using Geometric Formulas to Calculate Definite Integrals

Problem: Use the formula for the area of a circle to evaluate∫ 6
3

√
9− (x − 3)2 dx .

Solution: The function describes a semicircle with radius 3. To find

we want to find the area under the curve over the interval [3, 6]. The
formula for the area of a circle is A = πr2. The area of a semicircle is just

one-half the area of a circle, or A =
(
1
2

)
πr2. The shaded area in the

above Figure covers one-half of the semicircle, or A =
(
1
4

)
πr2.∫ 6

3

√
9− (x − 3)2 dx =

1

4
π(3)2 =

9

4
π
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Using Geometric Formulas to Calculate Definite Integrals

Problem: Use the formula for the area of a trapezoid to evaluate∫ 4
2 (2x + 3) dx .
Solution: The given function represents the height of a trapezoid. To find
the area under the curve over the interval [2, 4], we can use the formula for
the area of a trapezoid:

A =
1

2
h(b1 + b2)

where h is the height and b1, b2 are the bases.
Substituting the values:

A =
1

2
(3)(2 + (2 · 4 + 3)) = 18 square units
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Net Area

n∑
i=1

f (x∗i )∆x =(Area of rectangles above the x-axis)

− (Area of rectangles below the x-axis)

Net signed and total area

In the case where the function in integrable on [a, b]

∫ b

a
f (x)dx = A1 − A2 and

b∫
a

|f (x) | dx = A1 + A2.
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Finding the Net Signed Area

Problem: f (x) = 2x and the x-axis over the interval [−3, 3].
Solution: The function produces a straight line that forms two triangles:

one from x = −3 to x = 0 and the other from x = 0 to x = 3,

Using the geometric formula for the area of a triangle, A = 1
2bh, the area

of triangle A1, above the axis, is A1 =
1
2(3)(6) = 9,. The area of triangle

A2, below the axis, is A2 =
1
2(3)(6) = 9, Thus, the net area is∫ 3

−3
2x dx = A1 − A2 = 9− 9 = 0.
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Properties of the Definite Integral

Suppose that the functions f and g are integrable over all given intervals.∫ a

a
f (x) dx = 0;

∫ a

b
f (x) dx = −

∫ b

a
f (x) dx

∫ b

a
[f (x) + g(x)] dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx

. ∫ b

a
[f (x)− g(x)] dx =

∫ b

a
f (x) dx −

∫ b

a
g(x) dx

∫ b

a
kf (x) dx = k

∫ b

a
f (x) dx

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Using the Properties of the Definite Integral

Problem: Express
∫ 1
−2(−3x3 + 2x + 2) dx as the sum of three definite

integrals using the properties of the definite integral.
Solution: Using integral notation, we have∫ 1

−2
(−3x3 + 2x + 2) dx .

We apply properties 3 and 5 to get∫ 1
−2(−3x3 + 2x + 2) dx =

∫ 1
−2−3x3 dx +

∫ 1
−2 2x dx +

∫ 1
−2 2 dx

= −3
∫ 1
−2 x

3 dx + 2
∫ 1
−2 x dx +

∫ 1
−2 2 dx .
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Using the Properties of the Definite Integral

Problem: Express
∫ 3
1 (6x

3 − 4x2 + 2x − 3) dx as the sum of four definite
integrals using the properties of the definite integral.

Solution: Using
integral notation, we have∫ 3

1
(6x3 − 4x2 + 2x − 3) dx .

We apply properties to express it as the sum of four definite integrals:∫ 3
1 (6x

3 − 4x2 + 2x − 3) dx = 6
∫ 3
1 x3 dx − 4

∫ 3
1 x2 dx + 2

∫ 3
1 x dx −

∫ 3
1 3 dx .
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Using the Properties of the Definite Integral

Problem: If it is known that
∫ 8
0 f (x) dx = 10 and

∫ 5
0 f (x) dx = 5, find the

value of
∫ 8
5 f (x) dx .

Solution: By property 6,∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

Thus, ∫ 8
0 f (x) dx =

∫ 5
0 f (x) dx +

∫ 8
5 f (x) dx

10 = 5 +
∫ 8
5 f (x) dx

5 =
∫ 8
5 f (x) dx .

Clotilde Djuikem 1.2 The Definite Integral January 23, 2024 17 / 23



Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Using the Properties of the Definite Integral

Problem: If it is known that
∫ 5
1 f (x) dx = −3 and

∫ 5
2 f (x) dx = 4, find

the value of
∫ 2
1 f (x) dx .

Solution: By property 6,∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

Thus, ∫ 5
1 f (x) dx =

∫ 2
1 f (x) dx +

∫ 5
2 f (x) dx

−3 =
∫ 2
1 f (x) dx + 4

−7 =
∫ 2
1 f (x) dx .
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Comparison Theorem

Suppose that the functions f (x) and g(x) are integrable over the interval
[a, b].
If f (x) ≥ 0 for a ≤ x ≤ b, then∫ b

a
f (x) dx ≥ 0.

If f (x) ≥ g(x) for a ≤ x ≤ b, then∫ b

a
f (x) dx ≥

∫ b

a
g(x) dx .

If m and M are constants such that m ≤ f (x) ≤ M for a ≤ x ≤ b, then

m(b − a) ≤
∫ b
a f (x) dx

≤ M(b − a).
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Comparing Integrals over a Given Interval

Problem: Compare the integrals of the functions f (x) =
√
1 + x2 and

g(x) =
√
1 + x over the interval [0, 1].

Solution: Comparing functions f (x) and g(x) when x ∈ [0, 1]. Since
1 + x2 ≥ 0 and 1 + x ≥ 0 for x ∈ [0, 1], comparing

√
1 + x2 and

√
1 + x is

equivalent to comparing the expressions (1 + x2) and (1 + x) under the
roots on [0, 1]. We consider :

(1 + x2)− (1 + x) = 1 + x2 − 1− x = x2 − x = x(x − 1).

Since x ≥ 0 and x − 1 ≤ 0 on [0, 1], we have that x(x − 1) ≤ 0 on [0, 1].
It follows that 1 + x2 ≤ 1 + x on [0, 1], and hence

f (x) =
√
1 + x2 ≤

√
1 + x = g(x), x ∈ [0, 1].

Since both functions f (x) and g(x) are continuous on [0, 1],∫ 1

0
f (x) dx ≤

∫ 1

0
g(x) dx .
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Definition

Let f (x) be continuous over the interval [a, b]. Then, the average value of
the function f (x) (denoted by fave) on [a, b] is given by

fave =
1

b − a

∫ b

a
f (x) dx .
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Finding the Average Value of a Linear Function

Problem: Find the average value of f (x) = x + 1 over the interval [0, 5].
Solution: First, graph the function on the stated interval, as shown below.

The region is a trapezoid lying on its side, so we
can use the area formula for a trapezoid A = 1

2h(a+ b), where h
represents height, and a and b represent the two parallel sides. Then,∫ 5

0 (x + 1) dx = 1
2h(a+ b) = 1

2 · 5 · (1 + 6) = 35
2 .

Thus, the average value of the function is

1

5

∫ 5

0
(x + 1) dx =

1

5
· 35
2

=
7

2
.
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Definition and Notation Evaluating Definite Integrals Net Signed Area Comparison Properties of Integrals

Finding the Average Value of a Linear Function

Problem: Find the average value of f (x) = 6− 2x over the interval [0, 3].
Solution: Use the average value formula and geometry to evaluate the
integral. First, note that the function is a linear function, representing a
downward-sloping line.
Apply the average value formula:

Average Value =
1

b − a

∫ b

a
f (x) dx .

∫ 3
0 (6− 2x) dx = 1

3−0

∫ 3
0 (6− 2x) dx

= 1
3

[
6x − x2

]3
0

= 1
3 [(18− 9)− (0− 0)]

= 9
3 = 3.

Thus, the average value of the function is 3.Clotilde Djuikem 1.2 The Definite Integral January 23, 2024 23 / 23
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Outline

1 The Mean Value Theorem for Integrals

2 Fundamental Theorem of Calculus Part 1: Integrals and Antiderivatives

3 Antiderivatives and Indefinite Integrals

4 Fundamental Theorem of Calculus, Part 2: The Evaluation Theorem
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Learning Objectives

1 Describe the meaning of the Mean Value Theorem for Integrals.

2 State the meaning of the Fundamental Theorem of Calculus, Part 1.

3 Use the Fundamental Theorem of Calculus, Part 1, to evaluate
derivatives of integrals.

4 Review the notions of an Antiderivative and an Indefinite Integral, the
Table of Antiderivatives, and the Properties of Indefinite Integrals.

5 State the meaning of the Fundamental Theorem of Calculus, Part 2.

6 Use the Fundamental Theorem of Calculus, Part 2, to evaluate
definite integrals.

7 Explain the relationship between differentiation and integration.
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Mean Value Theorem for Integrals

If f (x) is continuous over an interval [a, b], then there is at least one point
c ∈ [a, b] such that

f (c) =
1

b − a

b∫
a

f (x) dx .

This formula can also be stated as

b∫
a

f (x) dx = f (c) · (b − a).
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Proof

Since f (x) is continuous on [a, b], by the extreme value theorem, it
assumes min and max values m and M, on [a, b]. ∀x in [a, b], we have
m ≤ f (x) ≤ M. Therefore, by the comparison theorem, we have

m(b − a) ≤
b∫

a

f (x) dx ≤ M(b − a).

Dividing by b − a gives us

m ≤ 1

b − a

b∫
a

f (x) dx ≤ M.

Since 1
b−a

b∫
a
f (x) dx is a number between m and M, and since f (x) is

continuous and assumes the values m and M over [a, b], by the
Intermediate Value Theorem, there is a number c in [a, b] such that

f (c) =
1

b − a

b∫
a

f (x) dx ,

and the proof is complete. □
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Finding the Average Value of a Function

Find the average value of the function f (x) = 8− 2x on [0, 4] and find c
such that f (c) equals the average value of the function over [0, 4].
Solution
The formula states the mean value of f (x) is given by

1
4−0

4∫
0

(8− 2x) dx .

The area of the triangle is A = 1
2(base)(height). We have

A = 1
2(4)(8) = 16.

The average value is found by multiplying the area by 1
4−0 . Thus, the

average value of the function is 1
4(16) = 4.

Set the average value equal to f (c) and solve for c .

8− 2c = 4, c = 2 Then Atc = 2, f (2) = 4.

At c = 2, f (2) = 4.Clotilde Djuikem 1.3 The Fundamental Theorem of Calculus January 30, 2024 6 / 35



The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Finding Average Value - Solution (Part 1)

Problem: Find the average value of the function f (x) = x
2 over the

interval [0, 6] and find c such that f (c) equals the average value of the
function over [0, 6].
Solution: The formula for the mean value of f (x) over the interval [a, b]
is given by

Average value =
1

b − a

b∫
a

f (x) dx .

For this problem, a = 0, b = 6, and f (x) = x
2 . Therefore,

Average value =
1

6

6∫
0

x

2
dx .
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Finding Average Value - Solution (Part 2)

Solving the integral,

Average value =
1

6

[
x2

4

]6
0

=
1

6

(
36

4
− 0

4

)
=

1

6
· 9 = 1.5.

To find c such that f (c) equals the average value, we set up the equation
f (c) = 1.5:

c

2
= 1.5.

Solving for c ,
c = 3.

Therefore, the average value is 1.5, and c is 3.
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Fundamental Theorem of Calculus, Part 1

If f (x) is continuous over an interval [a, b], and the function F (x) is
defined by

F (x) =

x∫
a

f (t)dt, then F ′(x) = f (x) over [a, b].

Proof: Applying the definition of the derivative, we have

F ′(x) = lim
h→0

1

h

x+h∫
x

f (t)dt.

we see that 1
h

x+h∫
x

f (t)dt is just the average value of the function f (x) on

[x , x + h]. Therefore, by the mean value theorem for integrals, there is
some number c in [x , x + h] such that
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

1

h

x+h∫
x

f (x) dx = f (c).

Since c approaches x as h approaches zero, and f (x) is continuous, we
have

lim
h→0

f (c) = lim
c→x

f (c) = f (x).

Putting all these pieces together, we have

F ′(x) = lim
h→0

1

h

x+h∫
x

f (x) dx = lim
h→0

f (c) = f (x),

and the proof is complete. □
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Finding a Derivative with the Fundamental Theorem of
Calculus

Problem: Find the derivative of g(x) =
x∫
1

1
t3+1

dt.

Solution

According to the Fundamental Theorem of Calculus, the derivative is given
by

g ′(x) =
1

x3 + 1
.

Clotilde Djuikem 1.3 The Fundamental Theorem of Calculus January 30, 2024 11 / 35



The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Using the Fundamental Theorem of Calculus, Part 1

Problem: Use the Fundamental Theorem of Calculus, Part 1, to find the

derivative of g(r) =
r∫
0

√
x2 + 4 dx .

Answer

g ′(r) =
√

r2 + 4.
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Using the Fundamental Theorem and the Chain Rule

Problem: Let F (x) =

√
x∫

1

sin(t) dt. Find F ′(x).

Fundamental Theorem of Calculus and the Chain Rule:

Let F (x) =
u(x)∫
a

f (t) dt be a function defined by an integral, where u(x) is

differentiable. Then, F ′(x) = f (u(x)) · u′(x).

Solution

Letting u(x) =
√
x , we have F (x) =

u(x)∫
1

sin(t)dt. Thus, by the

Fundamental Theorem of Calculus and the chain rule,

F ′(x) = sin (u(x))
du

dx
= sin (u(x)) ·

(
1

2
x−1/2

)
=

sin
√
x

2
√
x

.

Clotilde Djuikem 1.3 The Fundamental Theorem of Calculus January 30, 2024 13 / 35



The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Using the Fundamental Theorem and the Chain Rule

Problem: Let F (x) =

√
x∫

1

sin(t) dt. Find F ′(x).

Fundamental Theorem of Calculus and the Chain Rule:

Let F (x) =
u(x)∫
a

f (t) dt be a function defined by an integral, where u(x) is

differentiable. Then, F ′(x) = f (u(x)) · u′(x).

Solution

Letting u(x) =
√
x , we have F (x) =

u(x)∫
1

sin(t)dt. Thus, by the

Fundamental Theorem of Calculus and the chain rule,

F ′(x) = sin (u(x))
du

dx
= sin (u(x)) ·

(
1

2
x−1/2

)
=

sin
√
x

2
√
x

.

Clotilde Djuikem 1.3 The Fundamental Theorem of Calculus January 30, 2024 13 / 35



The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Fundamental Theorem of Calculus and the Chain Rule

Problem: Let F (x) =
x3∫
1

cos(t) dt. Find F ′(x).

Solution

Let u(x) = x3. Then, F (x) =
u(x)∫
1

cos(t) dt. According to the

Fundamental Theorem of Calculus and the Chain Rule,

F ′(x) = cos(u(x)) · u′(x).

Now, compute the derivatives:

u′(x) = 3x2 and cos(u(x)) = cos(x3).

Therefore, F ′(x) = 3x2 · cos(x3).
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Using the Fundamental Theorem of Calculus with Two
Variable Limits

Problem: Let F (x) =
2x∫
x
t3 dt. Find F ′(x).

Solution

Since both limits of integration are variable, we split it into two integrals:

F (x) =

0∫
x

t3 dt +

2x∫
0

t3 dt = −
x∫

0

t3 dt +

2x∫
0

t3 dt.

Differentiating the first term:

d

dx

− x∫
0

t3 dt

 = −x3.

Differentiating the second term using u(x) = 2x :

d

dx

 2x∫
0

t3 dt

 =
d

dx

 u(x)∫
0

t3 dt


= (u(x))3

du

dx
= (2x)3 · 2
= 16x3.

Thus,

F ′(x) =
d

dx

− x∫
0

t3 dt

+
d

dx

 2x∫
0

t3 dt


= −x3 + 16x3

= 15x3.

Clotilde Djuikem 1.3 The Fundamental Theorem of Calculus January 30, 2024 15 / 35



The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

solution Part 2

Solution

Thus,

F ′(x) =
d

dx

− x∫
0

t3 dt

+
d

dx

 2x∫
0

t3 dt


= −x3 + 16x3

= 15x3.
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Finding the Derivative

Problem: Let F (x) =
x2∫
x
cos(t) dt. Find F ′(x).

Solution

We have F (x) =
x2∫
x
cos(t) dt. To find F ′(x), we apply the Fundamental

Theorem of Calculus.

F ′(x) = cos(x2) · (x2)′ − cos(x) · (x)′ = 2x cos(x2)− cos(x).

Therefore,
F ′(x) = 2x cos(x2)− cos(x).
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Definition: Antiderivative

A function F is an antiderivative of the function f over an interval I if
F ′(x) = f (x) for all x in I .

Unlike the derivative, if an antiderivative of a given function exists, it
is not unique.

If F is an antiderivative of f over an interval I , then the set of all
antiderivatives of f over I , also called the most general antiderivative
of f over I , has the form F (x) + C , where C ∈ R is an arbitrary
constant.

The indefinite integral
∫
f (x) dx is the notation used for the most general

antiderivative of the function f on its domain:∫
f (x) dx = F (x) + C ,

where F is any particular antiderivative of f on its domain, and C is an
arbitrary constant.
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Integration and Differentiation Formulas part 1

Differentiation Formulas:

d

dx
(k) = 0

d

dx
(xn) = nxn−1

d

dx
(ln|x |) = 1

x
d

dx
(ex) = ex

d

dx
(ax) = ax ln(a) for a > 0, a ̸= 1

d

dx
(sin(x)) = cos(x)

d

dx
(cos(x)) = − sin(x)

Indefinite Integrals:∫
k dx = kx + C∫
xn dx =

xn+1

n + 1
+ C for n ̸= −1∫

1

x
dx = ln |x |+ C∫

ex dx = ex + C∫
ax dx =

ax

ln(a)
+ C for a > 0, a ̸= 1∫

cos(x) dx = sin(x) + C∫
sin(x) dx = − cos(x) + C
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Integration and Differentiation Formulas part 2

Differentiation Formulas:

d

dx
(tan(x)) = sec2(x)

d

dx
(csc(x)) = − csc(x) cot(x)

d

dx
(sec(x)) = sec(x) tan(x)

d

dx
(cot(x)) = − csc2(x)

d

dx
(sin−1(x)) =

1√
1− x2

d

dx
(tan−1(x)) =

1

1 + x2

d

dx
(sec−1 |x |) = 1

x
√
x2 − 1

Indefinite Integrals:∫
sec2(x) dx = tan(x) + C∫
csc x cot(x) dx = − csc(x) + C∫
sec x tan(x) dx = sec(x) + C∫
csc2(x) dx = − cot(x) + C∫

1√
1− x2

dx = sin−1(x) + C∫
1

1 + x2
dx = tan−1(x) + C∫

1

x
√
x2 − 1

dx = sec−1 |x |+ C
Clotilde Djuikem 1.3 The Fundamental Theorem of Calculus January 30, 2024 20 / 35



The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Properties of Indefinite Integrals

Sum and Difference Rules:∫ (
f (x)± g(x)

)
dx = F (x)± G (x) + C

Constant Multiple Rule:∫ (
k · f (x)

)
dx = k · F (x) + C

Note

There are NO product and quotient rules for indefinite integrals.
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Evaluation:
∫
(5x3 − 7x2 + 3x + 4) dx

∫
(5x3 − 7x2 + 3x + 4) dx =

5

4
x4 − 7

3
x3 +

3

2
x2 + 4x + C
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Evaluation:
∫ x2+4 3

√
x

x dx

∫
x2 + 4 3

√
x

x
dx =

1

2
x2 + 12x1/3 + C

Clotilde Djuikem 1.3 The Fundamental Theorem of Calculus January 30, 2024 23 / 35



The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Evaluation:
∫

4
1+x2 dx

∫
4

1 + x2
dx = 4tan−1(x) + C
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Evaluation:
∫
tan(x) cos(x) dx

∫
tan(x) cos(x) dx = − cos(x) + C
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Problem

Evaluate the following indefinite integral:∫
(4x3 − 5x2 + ex − 7) dx
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Solution

Using the properties of indefinite integrals together with an antiderivative
of a power function and the exponential function, we obtain∫

(4x3 − 5x2 + ex − 7) dx = x4 − 5

3
x3 + ex − 7x + C .

Clotilde Djuikem 1.3 The Fundamental Theorem of Calculus January 30, 2024 27 / 35



The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

The Fundamental Theorem of Calculus, Part 2

If f is continuous over the interval [a, b] and F (x) is any antiderivative of
f (x) on [a, b], then

b∫
a

f (x) dx = F (b)− F (a).

Proof
Let P = {xi}, i = 0, 1, . . . , n be a regular partition of [a, b]. Then, we can
write

F (b)− F (a) = F (xn)− F (x0) = [F (xn)− F (xn−1)] + [F (xn−1)− F (xn−2)]

+ . . .+ [F (x1)− F (x0)].
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Proof of the Fundamental Theorem of Calculus, Part 2

Now, we know F is an antiderivative of f over [a, b], and so F is an
antiderivative of f over each [xi−1, xi ]. Applying the Mean Value Theorem
for integrals to f over [xi−1, xi ] for i = 0, 1, . . . , n, we can find ci in
[xi−1, xi ] such that

F (xi )− F (xi−1) = F ′(ci )(xi − xi−1) = f (ci )∆x .

Then, substituting into the previous equation, we have

F (b)− F (a) =
n∑

i=1

f (ci )∆x .

Taking the limit of both sides as n → ∞, we obtain

F (b)− F (a) = lim
n→∞

n∑
i=1

f (ci )∆x =

∫ b

a
f (x) dx .
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Evaluating an Integral with the Fundamental Theorem of
Calculus

Problem: Evaluate
∫ 2
−2(t

2 − 4) dt.
Solution: Using the Fundamental Theorem of Calculus, we find the
antiderivative and evaluate at the limits:∫ 2

−2
(t2 − 4) dt =

(
t3

3
− 4t

) ∣∣∣2
−2

=

[
23

3
− 4(2)

]
−
[
(−2)3

3
− 4(−2)

]
=

(
8

3
− 8

)
−
(
−8

3
+ 8

)
=

8

3
− 8 +

8

3
− 8

=
16

3
− 16 = −32

3
.

Answer:
∫ 2
−2(t

2 − 4) dt = −32
3 .
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Evaluating a Definite Integral Using the Fundamental
Theorem of Calculus, Part 2

Problem: Evaluate
∫ 9
1

x−1√
x
dx using the Fundamental Theorem of

Calculus, Part 2.
Solution: First, eliminate the radical by rewriting the integral using
rational exponents. Then, separate the numerator terms:∫ 9

1

x − 1

x1/2
dx =

∫ 9

1

(
x1/2 − x−1/2

)
dx .

Now, integrate using the power rule for antiderivatives:∫ 9

1

(
x1/2 − x−1/2

)
dx =

(
x3/2

3
2

− x1/2

1
2

)∣∣∣9
1

=

[
2

3
(27)− 2(3)

]
−
[
2

3
(1)− 2(1)

]
= 18− 6− 2

3
+ 2 =

40

3
.

Answer:
∫ 9
1

x−1√
x
dx = 40

3 .
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Evaluate
∫ 2

1 x−4 dx

Problem: Evaluate the definite integral
∫ 2
1 x−4 dx .

Solution: To find the antiderivative, use the power rule for integration:∫
x−4 dx =

x−3

−3
+ C

= − 1

3x3
+ C .

Now, apply the Fundamental Theorem of Calculus:∫ 2

1
x−4 dx =

[
− 1

3x3

]2
1

=

(
− 1

3(2)3

)
−
(
− 1

3(1)3

)
= − 1

24
+

1

3
=

7

24
.

Answer:
∫ 2
1 x−4 dx = 7

24 .
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Roller-Skating Race: James vs. Kathy

James’s Velocity: f (t) = 5 + 2t ft/sec
To find James’s total distance traveled, integrate f (t) over the interval
[0, 5]: ∫ 5

0
(5 + 2t) dt =

[
5t +

1

2
t2
]5
0

= (25 + 25) = 50 ft.

So, James has skated 50 ft after 5 seconds.
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Roller-Skating Race: James vs. Kathy

Kathy’s Velocity: g(t) = 10 + cos(t) ft/sec
To find Kathy’s total distance traveled, integrate g(t) over the interval
[0, 5]: ∫ 5

0
(10 + cos(t)) dt = [10t + sin(t)]50

= (50 + sin(5))− (0− sin 0)

= 50 + sin(5).

Since π < 5 < 2π, sin(5) < 0. Therefore, Kathy has skated a bit less than
50 ft after 5 seconds. James wins, but not by much!
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The Mean Value Theorem for Integrals Integrals and Antiderivatives Antiderivatives and Indefinite Integrals The Evaluation Theorem

Rematch: James vs. Kathy

Suppose James and Kathy have a rematch, but this time the contest is
stopped after only 3 seconds. Let’s evaluate the distances covered:
James’s Velocity: f (t) = 5 + 2t ft/sec
To find James’s total distance in 3 seconds:∫ 3

0
(5 + 2t) dt =

[
5t +

1

2
t2
]3
0

= (15 +
9

2
) = 24 ft.

Kathy’s Velocity: g(t) = 10 + cos(t) ft/sec
To find Kathy’s total distance in 3 seconds:∫ 3

0
(10 + cos(t)) dt = [10t + sin(t)]30

= (30 + sin(3))− (0− sin 0)

= 30 + sin(3).

Since sin(3) > 0, Kathy has skated more than James. In this rematch,
Kathy wins: James skates 24 ft in 3 sec, but Kathy skates
30 + sin(3) > 30 ft in 3 sec.

Clotilde Djuikem 1.3 The Fundamental Theorem of Calculus January 30, 2024 35 / 35



1.5 Substitution

1.5 Substitution

January 30, 2024

1.5 Substitution January 30, 2024 1 / 23



1.5 Substitution

Outline

1 1.5 Substitution

1.5 Substitution January 30, 2024 2 / 23



1.5 Substitution

Learning Objectives

Use substitution to evaluate indefinite integrals.

Use substitution to evaluate definite integrals.
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1.5 Substitution

Substitution for Indefinite Integrals

Let u = g(x), where g ′(x) is continuous, let f (x) be continuous over the
range of g , and let F (x) be an antiderivative of f (x). Then,∫

f (g(x))g ′(x) dx =

∫
f (u) du = F (u) + C = F (g(x)) + C .
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1.5 Substitution

Proof

Let f , g , u, and F be as specified in the theorem. Then

d

dx

(
F (g(x))

)
= F ′(g(x))g ′(x) = f (g(x))g ′(x).

This means that F (g(x)) is an antiderivative of f (g(x))g ′(x) and hence∫
f (g(x))g ′(x) dx = F (g(x)) + C .

Since u = g(x) and F is an antiderivative of f , we have that
F (g(x)) + C = F (u) + C =

∫
f (u) du, which completes the proof. □
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1.5 Substitution

Example: Substitution for Indefinite Integrals

Returning to the problem we looked at originally, we let u = x2 − 3 and
then du = 2x dx . Rewriting the integral in terms of u, we obtain:∫

(x2 − 3)︸ ︷︷ ︸
u3

(2x dx)︸ ︷︷ ︸
du

=

∫
u3 du.

Using the power rule for integrals, we have:∫
u3 du =

u4

4
+ C .

Substituting the original expression for x back into the solution, we get:

u4

4
+ C =

(x2 − 3)4

4
+ C .
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1.5 Substitution

Problem-Solving Strategy: Integration by Substitution

Integration by Substitution

1 Look carefully at the integrand and select an expression g(x) within
the integrand to set equal to u. Quite often, we select g(x) so that
g ′(x) is also part of the integrand.

2 Substitute u = g(x) and du = g ′(x) dx into the integral.

3 We should now be able to evaluate the integral with respect to u. If
the integral can’t be evaluated, we need to go back and select a
different expression to use as u.

4 Evaluate the integral in terms of u.

5 Replace u with g(x) to write the result in terms of x .
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1.5 Substitution

Using Substitution to Evaluate an Indefinite Integral

Problem: Evaluate
∫
6x(3x2 + 4)4 dx .

Solution:

1 Choose u = 3x2 + 4, so du = 6x dx .

2 Write the integral in terms of u:∫
6x(3x2 + 4)4 dx =

∫
u4 du.

3 Evaluate the integral with respect to u and then return to the variable
x : ∫

u4 du =
u5

5
+ C =

(3x2 + 4)5

5
+ C .

Analysis: The derivative of the result of integration confirms the
correctness of our answer.
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1.5 Substitution

Using Substitution to Evaluate an Indefinite Integral

Problem: Evaluate
∫
3x2(x3 − 3)2 dx .

Solution:

1 Choose u = x3 − 3, so du = 3x2 dx .

2 Write the integral in terms of u:∫
3x2(x3 − 3)2 dx =

∫
u2 du.

3 Evaluate the integral with respect to u and then return to the variable
x : ∫

u2 du =
u3

3
+ C =

(x3 − 3)3

3
+ C .

Answer: ∫
3x2(x3 − 3)2 dx =

1

3
(x3 − 3)3 + C .
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1.5 Substitution

Using Substitution with Alteration

Problem: Evaluate
∫
z
√
z2 − 5 dz . Solution:

1 Let u = z2 − 5 and du = 2z dz . To match the integrand, multiply both sides
of the du equation by 1

2 :
1

2
du = z dz .

2 Rewrite the integral in terms of u:∫
z
√
z2 − 5 dz =

∫ √
u · 1

2
du =

1

2

∫ √
u du.

3 Integrate the expression in u using the power rule:

1

2

∫ √
u du =

1

2

(
2

3

)
u3/2 + C =

1

3
u3/2 + C =

1

3
(z2 − 5)3/2 + C .

Answer: ∫
z
√

z2 − 5 dz =
1

3
(z2 − 5)3/2 + C .
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1.5 Substitution

Use Substitution for Another Integral

Problem: Find the antiderivative of
∫
x2(x3 + 5)9 dx .

Hint: Multiply the du equation by 1
3 .

Solution:
1 Let u = x3 + 5 and du = 3x2 dx . To match the integrand, multiply

both sides of the du equation by 1
3 :

1

3
du = x2 dx .

2 Rewrite the integral in terms of u:∫
x2(x3 + 5)9 dx =

∫
u9 · 1

3
du.

3 Integrate the expression in u using the power rule:∫
u9 · 1

3
du =

1

3
· u

10

10
+ C =

1

30
u10 + C .

4 Substitute back u = x3 + 5 to obtain the final antiderivative:

1

30
(x3 + 5)10 + C .
1.5 Substitution January 30, 2024 11 / 23



1.5 Substitution

Using Substitution with Integrals of Trigonometric
Functions

Problem: Evaluate the integral
∫ sin(t)

cos3(t)
dt. Solution:

1 Rewrite the integral as
∫

1
cos3(t) · sin(t) dt.

2 Let u = cos(t). Then, du = − sin(t) dt, so sin(t) dt = −du.

3 Substitute −du for sin(t) dt and u for cos(t):∫
sin(t)

cos3(t)
dt = −

∫
1

u3
du.

4 Evaluate the integral in terms of u:

−
∫

1

u3
du = −

(
−1

2

)
u−2 + C =

1

2
u−2 + C .

5 Substitute u = cos(t) back into the expression:

1

2
cos−2(t) + C =

1

2 cos2(t)
+ C .
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1.5 Substitution

Using Substitution with Trigonometric Functions

Problem: Evaluate the integral
∫
cos(t) · 2sin(t) dt.

Solution:
1 Let u = sin(t). Then, du = cos(t) dt.
2 Substitute u and du into the integral:∫

cos(t) · 2sin(t) dt =
∫

2u du.

3 Evaluate the integral with respect to u:∫
2u du =

2u

ln(2)
+ C .

4 Substitute back u = sin(t):

2sin(t)

ln(2)
+ C .
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1.5 Substitution

Basic Trigonometric Integrals with Substitution

∫
tan(x) dx = − ln | cos(x)|+ C = ln | sec(x)|+ C∫
cot(x) dx = ln | sin(x)|+ C∫
sec(x) dx = ln | sec(x) + tan(x)|+ C∫
csc(x) dx = − ln | csc(x) + cot(x)|+ C = ln | csc(x)− cot(x)|+ C
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1.5 Substitution

Evaluating an Indefinite Integral Using Substitution

Problem: Evaluate the integral
∫

x√
x−1

dx using substitution. Solution: If

we let u = x − 1, then du = dx . But this does not account for the x in the
numerator of the integrand. We need to express x in terms of u to complete the
substitution. If u = x − 1, then x = u + 1. Now we can rewrite the integral in
terms of u: ∫

x√
x − 1

dx =

∫
u + 1√

u
du

=

∫ (√
u +

1√
u

)
du

=

∫ (
u1/2 + u−1/2

)
du.

Then we integrate in the usual way, replace u with the original expression, and
factor and simplify the result. Thus,∫ (

u1/2 + u−1/2
)
du =

2

3
u3/2 + 2u1/2 + C

=
2

3
(x − 1)3/2 + 2(x − 1)1/2 + C .
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1.5 Substitution

Using Substitution to Evaluate an Indefinite Integral

Problem: Evaluate the indefinite integral
∫
t(1− 2t)7 dt using

substitution.
Solution: Let u = 1− 2t. Then, du = −2 dt or dt = −1

2 du. Substituting
u = 1− 2t and dt = −1

2 du into the integral, we have:∫
t(1− 2t)7 dt = −1

2

∫
t du = −1

2

∫
u

−2
du =

1

4

∫
u du

=
1

4
· u

2

2
+ C =

1

8
u2 + C =

1

8
(1− 2t)2 + C

=
(1− 2t)2

8
+ C

=
(1− 2t)9

36
− (1− 2t)8

32
+ C .
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1.5 Substitution

Substitution for Definite Integrals

Let u = g(x), where g ′(x) is continuous over an interval [a, b], and let f
be continuous over the range of u = g(x). Then,∫ b

a
f (g(x)) · g ′(x) dx =

∫ g(b)

g(a)
f (u) du.
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1.5 Substitution

Using Substitution to Evaluate a Definite Integral

Problem: Evaluate
∫ 1
0 (x

3 + 1)ex
4+4x dx using substitution.

Solution: Take u = x4 + 4x . Then du = (4x3 + 4) dx = 4(x3 + 1) dx and
hence (x3 + 1) dx = 1

4du. To adjust the bounds of integration, note that
x = 0 corresponds to u = 04 + 4 · 0 = 0 and x = 1 corresponds to
u = 14 + 4 · 1 = 5. We then obtain

∫ 1

0
(x3 + 1)ex

4+4x dx =

∫ 5

0

1

4
eu du =

1

4
eu

∣∣∣∣∣
5

0

=
e5 − 1

4
.
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1.5 Substitution

Using Substitution to Evaluate a Definite Integral

Problem: Evaluate
∫ e
1

ln(x)
x dx using substitution.

Solution: Take u = ln(x). Then du = 1
x dx and the bounds of integration

transform as follows: x = 1 ⇒ u = ln(1) = 0 and x = e ⇒ u = ln(e) = 1.
We rewrite the integral in terms of u:∫ e

1

ln(x)

x
dx =

∫ 1

0
u du.

Now, integrating the expression with respect to u, we get:∫ 1

0
u du =

1

2
u2
∣∣∣∣1
0

=
1

2
(12 − 02) =

1

2
.

Therefore,
∫ e
1

ln(x)
x dx = 1

2 .
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1.5 Substitution

Using Substitution to Evaluate a Definite Integral

Problem: Evaluate
∫ 1
1/2

sin( 1
x )

x2
dx using substitution.

Solution: Let u = 1
x = x−1. Then du = − 1

x2
dx and x = 1

2 ⇒ u = 2, and
x = 1 ⇒ u = 1. We rewrite the integral in terms of u:

∫ 1

1/2

sin
(
1
x

)
x2

dx =

∫ 1

2
sin(u) · (−1)du = (cos(u))

∣∣∣1
2
= cos(1)− cos(2).

Analysis: Note that the lower limit of integration was bigger than the
upper limit in the integral in terms of u. This often happens when using
substitution, and it’s not an issue.
Answer: cos(1)− cos(2)
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1.5 Substitution

Using Substitution to Evaluate a Definite Integral (Cont’d)

Problem: Evaluate
∫ π2/9
π2/16

sec2(
√
x)√

x
dx using substitution.

Solution: Take u =
√
x . Then du = 1

2
√
x
dx implies that dx = 2

√
xdu,

x = π2/16 ⇒ u = π/4, and x = π2/9 ⇒ u = π/3. We rewrite the integral
in terms of u:∫ π2/9

π2/16

sec2(
√
x)√

x
dx =

∫ 1/3

1/4
2 sec2(u) du = 2 tan(u)

∣∣∣π/3
π/4

.

Answer: 2(tan(π/3)− tan(π/4)) = 2(
√
3− 1)
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1.5 Substitution

Evaluating a Definite Integral using Substitution

Problem: Evaluate
∫ 1
0 x5(1− x3)4 dx using substitution.

Solution: Let u = 1− x3, then du = −3x2dx . We need to express x5 dx
in terms of u: x5 dx = (1− u)

(
−1

3

)
du. Adjusting the limits,

x = 0 ⇒ u = 1, and x = 1 ⇒ u = 0. We rewrite the integral in terms of u:

∫ 1

0
x5(1− x3)4 dx =− 1

3

0∫
1

u4(1− u)du = −1

3

0∫
1

(u4 − u5)du

=

(
−1

3

)(
u5

5
− u6

6

) ∣∣∣∣∣
0

1

= −1

3

[
(0− 0)−

(
1

5
− 1

6

)]
=

1

90
.
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1.5 Substitution

Evaluating a Definite Integral using Substitution (Cont’d)

Problem: Evaluate
∫ 0
−1

y3

y2+1
dy using substitution.

Solution: Take u = y2 + 1. Then du = 2ydy , y = −1 ⇒ u = 2, and
y = 0 ⇒ u = 1. We rewrite the integral in terms of u:∫ 0

−1

y3

y2 + 1
dy =

∫ 2

0
?? du.

Answer: ln(2)−1
2
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1.4 The Net Change Theorem and Integrals

Learning Objectives

Explain the significance of the net change theorem.

Use the net change theorem to solve applied problems.

Apply the integrals of odd and even functions.
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1.4 The Net Change Theorem and Integrals

Net Change Theorem

The new value of a changing quantity equals the initial value plus the
integral of the rate of change:

F (b) = F (a) +

b∫
a

F ′(x) dx

or

b∫
a

F ′(x) dx = F (b)− F (a).
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1.4 The Net Change Theorem and Integrals

Net Change Theorem
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1.4 The Net Change Theorem and Integrals

Finding Net Displacement

Given a velocity function v(t) = 3t − 5 (in meters per second) for a
particle in motion from time t = 0 to time t = 3, find the net
displacement of the particle.
Solution:
Applying the net change theorem, we have

∫ 3

0
(3t − 5) dt

=
3t2

2
− 5t

∣∣∣∣∣
3

0

=

[
3(3)2

2
− 5(3)

]
− 0

=
27

2
− 15 =

27

2
− 30

2

= −3

2
.

The net displacement is −3
2 meters.
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1.4 The Net Change Theorem and Integrals

Finding Total Distance Traveled

Given the velocity function v(t) = 3t − 5 m/sec over the time interval
[0, 3], we want to find the total distance traveled by the particle.
Solution: To find the total distance traveled, we integrate the absolute
value of the velocity function:∫ 3

0

|v(t)| dt =
∫ 5/3

0

(−v(t)) dt +

∫ 3

5/3

v(t) dt =

∫ 5/3

0

(5− 3t) dt +

∫ 3

5/3

(3t − 5) dt

=

(
5t − 3t2

2

) ∣∣∣∣5/3
0

+

(
3t2

2
− 5t

) ∣∣∣∣3
5/3

=

[
5

(
5

3

)
−

3
(
5
3

)2
2

]
+

[
27

2
− 15

]
−

[
3
(
5
3

)2
2

− 25

3

]

=
25

3
− 25

6
+

27

2
− 15− 25

6
+

25

3
=

41

6
.

So, the total distance traveled is 41
6 m.
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1.4 The Net Change Theorem and Integrals

Finding Net Displacement and Total Distance Traveled

Given the velocity function f (t) = 1
2e

t − 2 over the interval [0, 2], we want
to find the net displacement and the total distance traveled by the particle.
Solution:

1 Net Displacement: To find the net displacement, we apply the net
change theorem:∫ 2

0
f (t) dt =

[
1

2
et − 2t

] ∣∣∣∣2
0

=

[
1

2
e2 − 4

]
−
[
1

2
e0 − 0

]
=

1

2
e2 − 4− 1

2
.

So, the net displacement is 1
2e

2 − 9
2 m.

2 Total Distance Traveled: To find the total distance traveled, we
integrate the absolute value of the velocity function:∫ 2

0
|f (t)| dt =

∫ 2

0

∣∣∣∣12et − 2

∣∣∣∣ dt =??.
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1.4 The Net Change Theorem and Integrals

How Many Gallons of Gasoline Are Consumed?

If the motor on a motorboat is started at t = 0 and the boat consumes
gasoline at the rate of (5− t3) gal/hr, how much gasoline is used in the
first 2 hours?

Solution: Express the problem as a definite integral, integrate, and
evaluate using the Fundamental Theorem of Calculus. The limits of
integration are the endpoints of the interval [0, 2]. We have

∫ 2

0
(5− t3) dt =

(
5t − t4

4

) ∣∣∣∣∣
2

0

=

[
5(2)− (2)4

4

]
− 0 = 10− 16

4
= 6.

Thus, the motorboat uses 6 gal of gas in 2 hours.
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1.4 The Net Change Theorem and Integrals

Chapter Opener: Iceboats

Figure: Iceboat in action. (Credit: modification of work by Carter Brown, Flickr)

Andrew sets out. As he prepares his iceboat, the wind intensifies. During the first
half-hour, the wind speed increases according to:

v(t) =

{
20t + 5 for 0 ≤ t ≤ 1

2

15 for 1
2 ≤ t ≤ 1

Recalling that Andrew’s iceboat travels at twice the wind speed, and assuming he
moves in a straight line away from his starting point, how far is Andrew from his
starting point after 1 hour?
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1.4 The Net Change Theorem and Integrals

Solution

To figure out how far Andrew has traveled, we need to integrate his
velocity, which is twice the wind speed. Then

Distance =

∫ 1

0
2v(t) dt.

∫ 1

0

2v(t) dt =

∫ 1
2

0

2v(t) dt +

∫ 1

1
2

2v(t) dt

=

∫ 1
2

0

2(20t + 5) dt +

∫ 1

1
2

2(15) dt =

∫ 1
2

0

(40t + 10) dt +

∫ 1

1
2

30 dt

=
[
20t2 + 10t

] ∣∣∣∣∣
1
2

0

+ [30t]

∣∣∣∣∣
1

1
2

=

(
20

4
+ 5

)
− 0 + (30− 15) = 25.

So Andrew is 25 miles from his starting point after 1 hour.
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1.4 The Net Change Theorem and Integrals

Andrew’s Iceboating Outing

Suppose that, instead of remaining steady during the second half hour of
Andrew’s outing, the wind starts to die down according to the function

v(t) =

{
20t + 5 for 0 ≤ t ≤ 1

2

−10t + 15 for 1
2 ≤ t ≤ 1

Under these conditions, how far from his starting point is Andrew after 1
hour?

Distance =

∫ 1

0
2v(t) dt.

Answer: 17.5 miles.
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1.4 The Net Change Theorem and Integrals

Integrals of Even and Odd Functions

Suppose that the function f is continuous over the interval [−a, a].

If f is even: ∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx

If f is odd: ∫ a

−a
f (x) dx = 0
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1.4 The Net Change Theorem and Integrals

Even and odd functions
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1.4 The Net Change Theorem and Integrals

Integrating an Even Function

Integrate the even function
∫ 2
−2(3x

8 − 2) dx and verify that the integration
formula for even functions holds.
Solution:
First, we formally verify that the integrand function is even. Let
f (x) = 3x8 − 2. Then f (−x) = 3(−x)8 − 2 = 3x8 − 2 = f (x), which
precisely means that f is even. We then have∫ 2

−2
(3x8 − 2) dx =

(
x9

3
− 2x

) ∣∣∣∣∣
2

−2

=

[
29

3
− 2(2)

]
−
[
(−2)9

3
− 2(−2)

]
=

(
512

3
− 4

)
−
(
−512

3
+ 4

)
=

1000

3
.
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1.4 The Net Change Theorem and Integrals

even functions

To verify the integration formula for even functions, we can calculate the
integral from 0 to 2, then double it and check to make sure we get the
same answer: ∫ 2

0
(3x8 − 2) dx =

(
x9

3
− 2x

) ∣∣∣∣∣
2

0

=
512

3
− 4

=
500

3
.

Since 2× 500
3 = 1000

3 , we have verified the formula for even functions in
this particular example.
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1.4 The Net Change Theorem and Integrals

Integrating an Odd Function

Verify that the function f (x) = sin3(x)(x2 + 1) is odd and use this fact to

evaluate the definite integral
∫ 5
−5 f (x) dx .

Solution:

Substituting −x into f , we obtain

f (−x) = sin3(−x)((−x)2 + 1)

= (− sin(x))3(x2 + 1)

= − sin3(x)(x2 + 1)

= −f (x),

which proves that f is odd. Because f is continuous over the whole real
line as a product of a polynomial and a sine function, it is also continuous
over [−5, 5], and we can apply the above result to conclude that∫ 5
−5 sin

3(x)(x2 + 1) dx = 0.
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1.4 The Net Change Theorem and Integrals

Using Properties of Symmetric Functions

Consider the function f (x) = x4. This function is an even function
because f (−x) = (−x)4 = x4 = f (x) for all x . Since f (x) is even, we can
use the property of integrals of symmetric functions:∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx

where a is the interval length. Applying this property , we have:∫ 2

−2
x4 dx = 2

∫ 2

0
x4 dx

Now, let’s evaluate the integral
∫ 2
0 x4 dx :∫ 2

0
x4 dx =

[
x5

5

]2
0

=
25

5
− 05

5
=

32

5

Finally, multiply by 2 to get the value of
∫ 2
−2 x

4 dx = 2× 32
5 = 64

5
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1.4 The Net Change Theorem and Integrals

Quiz: Integrating Even and Odd Functions

Problem 1: Determine if the following functions are even, odd, or neither:

1 f (x) = x3 + 2

2 g(x) = sin(x) + cos(x)

3 h(x) = ex + e−x

Solution Problem 1:

1 f (x): Neither (not symmetric about the y-axis)

2 g(x): Neither (not symmetric about the origin)

3 h(x): Even (symmetric about the y-axis)
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1.4 The Net Change Theorem and Integrals

Quiz: Is f (x) an odd function, even function, or neither? s

Problem 1: Consider the function f (x) = x3 − x2 + 4x + 2.

1 Neither

Problem 2: Consider the function f (x) = −x2 + 10.

1 Even

Problem 3: Consider the function f (x) = x3 + 4x .

1 Odd

Problem 4: Consider the function f (x) = −x3 + 5x − 2.

1 Neither

Problem 5: Consider the function f (x) =
√
x4 − x2 + 4.

1 Even
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