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Learning Objectives

Express changing quantities in terms of derivatives.

Find relationships among derivatives in a given problem.

Use the chain rule to find the rate of change of one quantity based on
the rate of change of other quantities.

Clotilde Djuikem 2 / 32



Application

In many real-world applications, related quantities are changing with
respect to time. For example, if we consider the balloon example again, we
can say that the rate of change in the volume, V , is related to the rate of
change in the radius, r . In this case, we say that dV

dt and dr
dt are related

rates because V is related to r .
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Steps

Step 1: Volume of a Sphere

The volume of a sphere of radius r centimeters is:

V =
4

3
πr3 cm3.

Since the balloon is being filled with air, both the volume and the radius
are functions of time. Therefore, t seconds after beginning to fill the
balloon with air, the volume of air in the balloon is:

V (t) =
4

3
π [r(t)]3 cm3.
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Step 2: Differentiate and Apply Chain Rule

Differentiating both sides of the equation with respect to time t, and
applying the chain rule, we get:

dV

dt
= 4π [r(t)]2 · dr

dt
.

This equation shows that the rate of change of the volume dV
dt is related

to the rate of change of the radius dr
dt .

Step 3: Known Rate of Volume Change

The balloon is being filled with air at the constant rate of 2 cm3/sec, so:

dV

dt
= 2 cm3/sec.

Substituting into the equation, we have:

2 = 4π [r(t)]2 · dr
dt

Then
dr

dt
=

1

2π [r(t)]2
cm/sec.
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Step 4: Substitute r = 3 cm

When the radius r = 3 cm, substituting this into the equation gives:

dr

dt
=

1

18π
cm/sec.

Therefore, the radius of the balloon is increasing at a rate of 1
18π cm/sec.
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Problem-Solving Strategy: Solving a Related-Rates

To solve a related-rates problem, follow these steps:

1 Assign symbols to all variables involved in the problem. Draw a
figure if applicable.

2 State the information given in terms of the variables and identify
the rate that needs to be determined.

3 Find an equation relating the variables from step 1.

4 Differentiate both sides of the equation from step 3 with respect to
the independent variable, using the chain rule. This will give an
equation relating the derivatives.

5 Substitute known values into the equation from step 4 and solve for
the unknown rate of change.

Remember

Remember not to substitute values too soon, as this could turn a variable
into a constant prematurely.
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Problem: Airplane Flying Overhead

An airplane is flying at a constant height of 4000 ft. A man is viewing the
plane from a position 3000 ft from the base of a radio tower. The airplane
is flying horizontally away from the man at 600 ft/sec.

Question: At what rate is the distance between the man and the plane
increasing when the plane passes over the radio tower?

Step 1: Assign Variables

Let:

x(t) = the horizontal distance between the man and the point on the
ground directly below the airplane (changing with time),

s(t) = the slant distance between the man and the airplane,

Height of the plane is constant at 4000 ft.

We are tasked to find ds
dt when x(t) = 3000 ft.
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Graph
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Step 2: Write Known Information

The horizontal distance is increasing at a constant rate:

dx

dt
= 600 ft/sec.

We need to find the rate of change of the distance between the man and
the plane, i.e., ds

dt , when x = 3000 ft.

Step 3: Relating the Variables

From the geometry of the problem (right triangle), we can relate x(t) and
s(t) using the Pythagorean theorem:

s(t)2 = x(t)2 + 40002.

Differentiating 2s(t)dsdt = 2x(t)dxdt . Simplifying:

s(t)
ds

dt
= x(t)

dx

dt
.
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Steps 4: Solve for ds
dt

Solving for ds
dt , we get:

ds

dt
=

x(t)dxdt
s(t)

.

When x = 3000 ft, we find s using the Pythagorean theorem:

s =
√
30002 + 40002 = 5000 ft.

Substituting the known values:

ds

dt
=

3000× 600

5000
= 360 ft/sec.

Answer: The distance between the man and the airplane is increasing at
360 ft/sec.
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Airplane

An airplane is flying at a constant height of 4000 ft. A man is viewing the
plane from a position 3000 ft from the base of a radio tower. The airplane
is flying horizontally away from the man at 600 ft/sec.
Question: At what rate is the distance between the man and the plane
increasing when the plane passes over the radio tower?
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Step 1: Assign Variables

Let h denote the height of the rocket above the launch pad and θ be the
angle between the camera lens and the ground.

Objective: We are trying to find dθ
dt when the rocket is 1000 ft above the

ground.
Given: The rocket is moving at a rate of:

dh

dt
= 600 ft/sec.
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Step 2: Relating Variables with Trigonometry

Relating Variables:

The right triangle formed by the rocket’s height, the distance from the
camera to the launch pad, and the hypotenuse helps relate h and θ.

From trigonometry, we know:

tan θ =
h

5000
.

This gives us the equation:

h = 5000 tan θ.
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Step 3: Differentiate with Respect to Time

Differentiating both sides of the equation h = 5000 tan θ with respect to
time t:

dh

dt
= 5000 sec2 θ · dθ

dt
.

We want to find dθ
dt when h = 1000 ft.

So, we need to calculate sec2 θ at that point.
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Step 4: Determine sec2 θ and Hypotenuse

We know the adjacent side is 5000 ft, and the opposite side is h = 1000 ft.

Using the Pythagorean theorem, the hypotenuse c is:

c =
√
50002 + 10002 = 1000

√
26 ft.

Therefore:

sec2 θ =

(
1000

√
26

5000

)2

=
26

25
.
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Step 4: Triangle Diagram

The triangle shows h = 1000 ft, adjacent side 5000 ft, and hypotenuse
c = 1000

√
26 ft.

Clotilde Djuikem 17 / 32



Step 5: Solve for dθ
dt

From Step 3, we have the equation:

dh

dt
= 5000 sec2 θ · dθ

dt
.

Substituting the known values dh
dt = 600 ft/sec and sec2 θ = 26

25 :

600 = 5000 · 26
25

· dθ
dt

.

Solving for dθ
dt :

dθ

dt
=

3

26
rad/sec.
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Problem: Rate of Change for Camera Angle

Problem:
What rate of change is necessary for the elevation angle of the camera if
the camera is placed on the ground at a distance of 4000 ft from the
launch pad and the velocity of the rocket is 500 ft/sec when the rocket is
2000 ft off the ground?

Hint:
Find dθ

dt when h = 2000 ft. At that time, we know:

dh

dt
= 500 ft/sec.
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Solution

Solution:
The rate of change of the camera’s elevation angle is:

1

10
rad/sec.
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Water Draining from a Funnel

Water is draining from the bottom of a cone-shaped funnel at the rate of
0.03 ft3/sec. The height of the funnel is 2 ft and the radius at the top of
the funnel is 1 ft.
At what rate is the height of the water in the funnel changing when the
height of the water is 1

2 ft?
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Step 2: Determine dh
dt

Let h denote the height of the water in the funnel, r denote the radius of
the water at its surface, and V denote the volume of the water.

We need to determine dh
dt when h = 1

2 ft. We know that:

dV

dt
= −0.03 ft3/sec.
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Step 3: Volume of Water in the Cone

The volume of water in the cone is given by:

V =
1

3
πr2h.

From the figure, we know that we have similar triangles. Therefore, the
ratio of the sides in the two triangles is the same:

r

h
=

1

2
or r =

h

2
.

Using this, the equation for volume becomes:

V =
1

3
π

(
h

2

)2

h =
π

12
h3.
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Step 4: Apply Chain Rule

Applying the chain rule, we differentiate both sides of the equation with
respect to time t:

dV

dt
=

π

4
h2

dh

dt
.
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Step 5: Solve for dh
dt

We want to find dh
dt when h = 1

2 ft. Since water is leaving at the rate of
0.03 ft3/sec, we know:

dV

dt
= −0.03 ft3/sec.

Therefore:

−0.03 =
π

4

(
1

2

)2 dh

dt
,

which simplifies to:

−0.03 =
π

16

dh

dt
.
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Final Solution

Solving for dh
dt , we get:

dh

dt
=

−0.48

π
≈ −0.153 ft/sec.
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Problem: Water Level Rate of Change

Problem:
At what rate is the height of the water changing when the height of the
water is 1

4 ft?

Hint:
We need to find dh

dt when h = 1
4 .

Step 1: Volume Formula

The volume of water in the cone is:

V =
1

3
πr2h.

Since r
h = 1

2 , we have r = h
2 . Substituting this into the volume equation:

V =
1

3
π

(
h

2

)2

h =
π

12
h3.
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Step 2: Differentiate the Volume

Differentiating both sides of the volume equation with respect to time:

dV

dt
=

π

4
h2

dh

dt
.

Step 3: Solve for dh
dt

We know that water is draining at a rate of dV
dt = −0.03 ft3/sec. Thus:

−0.03 =
π

4

(
1

4

)2
dh

dt
.

Simplifying the equation:

−0.03 =
π

4
× 1

16

dh

dt
=

π

64

dh

dt
.

Therefore, solving for dh
dt :

dh

dt
=

−0.03× 64

π
=

−1.92

π
≈ −0.611 ft/sec.
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Step 4

The height of the water is decreasing at a rate of approximately:

dh

dt
≈ −0.611 ft/sec

when the height of the water is 1
4 ft.
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Problem: Ladder Sliding Down a Wall

A ladder 10 feet long is leaning against a vertical wall. The bottom of the
ladder is pulled away from the wall at a rate of 2 feet per second.

Question: How fast is the top of the ladder sliding down the wall when
the bottom of the ladder is 6 feet away from the wall?
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Problem: Ladder Sliding Down a Wall

Step 1: Assign Variables

Step 2: Use the Pythagorean Theorem
The relationship between x , y , and L is given by:

Step 3: Differentiate with Respect to Time Differentiate both
sides of the equation with respect to time t:

Step 4: Solve for dy
dt

Step 5: Find y When x = 6
Use the Pythagorean theorem to find y when x = 6 ft:

Step 6: Final Substitution
Substitute x = 6, y , and dx

dt = 2 ft/sec into the equation to find dy
dt .
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Key Concepts

To solve a related rates problem:

1 First, draw a picture that illustrates the relationship between the two
or more related quantities that are changing with respect to time.

2 In terms of the quantities, state the information given and the rate
to be found.

3 Find an equation relating the quantities.

4 Use differentiation, applying the chain rule as necessary, to find an
equation that relates the rates.

5 Be sure not to substitute a variable quantity for one of the variables
until after finding an equation relating the rates.
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Maxima and Minima
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Learning Objectives

Learning Objectives

Define absolute extrema.

Define local extrema.

Explain how to find the critical numbers of a function over a closed
interval.

Describe how to use critical numbers to locate absolute extrema over
a closed interval.
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Practical Significance of Extrema

Important Note

We are often interested in determining the largest and smallest values of a
function. This information is important for:

Creating accurate graphs.

Solving optimization problems such as maximizing profit or
minimizing material usage.
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Absolute Extrema Example

Example

Consider the function f (x) = x2 + 1 over the interval (−∞,∞):

As x → ±∞, f (x) → ∞.

Therefore, the function does not have a largest value.

However, f (x) ≥ 1 for all x , and f (0) = 1.

Conclusion: The function has an absolute minimum of 1 at x = 0, but
no absolute maximum.
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Definition of Absolute Extrema

Definition

Let f be a function defined over an interval I , and let c ∈ I .

f has an absolute maximum on I at c if f (c) ≥ f (x) for all x ∈ I .

f has an absolute minimum on I at c if f (c) ≤ f (x) for all x ∈ I .

If f has an absolute maximum or minimum, we say that f has an
absolute extremum at c .
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Graph for extrema
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Extreme Value Theorem

Theorem

If f is a continuous function over the closed, bounded interval [a, b], then:

There is a point in [a, b] at which f has an absolute maximum.

There is a point in [a, b] at which f has an absolute minimum.
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Illustration local extrema
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Local Extrema

A function f has a local maximum at c if:

There exists an open interval I containing c.

I is contained in the domain of f .

f (c) ≥ f (x) for all x ∈ I .

A function f has a local minimum at c if:

There exists an open interval I containing c.

I is contained in the domain of f .

f (c) ≤ f (x) for all x ∈ I .

A function f has a local extremum at c if:

f has a local maximum at c, or

f has a local minimum at c.
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Definition and Fermat’s Theorem

Definition

Let c be an interior point in the domain of f . We say that c is a critical
number of f if

f ′(c) = 0 or f ′(c) is undefined.

Fermat’s Theorem

If f has a local extremum at c and f is differentiable at c , then

f ′(c) = 0.

Important

Note this theorem does not claim that a function f must have a local
extremum at a critical number. Rather, it states that critical numbers are
candidates for local extrema.
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Proof Fermat’s Theorem

Suppose f has a local extremum at c and f is differentiable at c. We need to show that
f ′(c) = 0. To do this, we will show that f ′(c) ≥ 0 and f ′(c) ≤ 0, and therefore
f ′(c) = 0. Since f has a local extremum at c, f has a local maximum or local minimum
at c.
Suppose f has a local maximum at c. The case in which f has a local minimum at c can
be handled similarly. There then exists an open interval I such that f (c) ≥ f (x) for all
x ∈ I . Since f is differentiable at c, from the definition of the derivative, we know that

f ′(c) = lim
x→c

f (x)− f (c)

x − c
.

Since this limit exists, both one-sided limits also exist and equal f ′(c). Therefore,

f ′(c) = lim
x→c+

f (x)− f (c)

x − c
, and f ′(c) = lim

x→c−

f (x)− f (c)

x − c
.

Since f (c) is a local maximum, we see that f (x)− f (c) ≤ 0 for x near c. Therefore, for
x near c, but x ̸= c, we have

f (x)− f (c)

x − c
≤ 0.

From this, we conclude that f ′(c) ≤ 0. Similarly, it can be shown that f ′(c) ≥ 0.
Therefore,

f ′(c) = 0.
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Defined and undefined f ′(c)
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Steps to Find Local Minima and Maxima

Step 1: Find the derivative f ′(x)

Step 2: Set the derivative equal to zero: Solve f ′(x) = 0 critical
numbers

Step 3: Determine where the derivative is undefined

Step 4: Use the First Derivative Test

For each critical point c:

If f ′(x) changes from positive to negative at c, f (c) is a local
maximum.

If f ′(x) changes from negative to positive at c, f (c) is a local
minimum.

If f ′(x) does not change sign, f (c) is neither.
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Optional and applicable steps

Step 5: Use the Second Derivative Test (optional)

If the second derivative f ′′(x) exists:

If f ′′(c) > 0, f (c) is a local minimum.

If f ′′(c) < 0, f (c) is a local maximum.

If f ′′(c) = 0, the test is inconclusive.

Step 6: Check the endpoints (if applicable)

If the function is defined on a closed interval, check the function values at
the endpoints. These may give the absolute maximum or minimum over
the interval.
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Locating Critical Numbers: Example a

For the function f (x) = 1
3x

3 − 5
2x

2 + 4x :

Step 1: Find the derivative f ′(x).

f ′(x) =

Step 2: Set f ′(x) = 0 and solve for x to find the critical numbers.

f ′(x) = 0 ⇒ x =

Step 3: Determine if there is a local extremum at each critical
number using a graphing utility.
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Locating Critical Numbers: Example b

For the function f (x) = (x2 − 1)3:

Step 1: Find the derivative f ′(x).

f ′(x) =

Step 2: Set f ′(x) = 0 and solve for x to find the critical numbers.

f ′(x) = 0 ⇒ x =

Step 3: Determine if there is a local extremum at each critical
number using a graphing utility.
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Locating Critical Numbers: Example c

For the function f (x) = 4x
1+x2

:

Step 1: Find the derivative f ′(x).

f ′(x) =

Step 2: Set f ′(x) = 0 and solve for x to find the critical numbers.

f ′(x) = 0 ⇒ x =

Step 3: Determine if there is a local extremum at each critical
number using a graphing utility.
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Finding Critical Numbers

Find all critical numbers for the function:

f (x) = x3 − 1

2
x2 − 2x + 1

Step 1: Find the derivative f ′(x).

f ′(x) =

Step 2: Set the derivative equal to zero and solve for x .

f ′(x) = 0 ⇒ x =

Step 3: List the critical numbers:

Critical numbers:
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Location of Absolute Extrema

Let I = [a, b]

If f is a continuous function on a closed interval I , then:

The absolute maximum

The absolute minimum

must happen either at the endpoints of I or at critical points inside I .
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Problem-Solving Strategy: Finding Absolute Extrema

Consider a continuous function f defined over the closed interval [a, b].

1 Step 1: Evaluate the function f at the endpoints of the interval.
Calculate:

f (a) and f (b)

2 Step 2: Find all critical numbers of the function f within the open
interval (a, b). A critical number is where:

f ′(x) = 0 or f ′(x) is undefined

Then, evaluate the function at each critical number found.
3 Step 3: Compare all values obtained from Steps 1 and 2:

The largest value is the absolute maximum.
The smallest value is the absolute minimum.
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Locating Absolute Extrema for Function a

Function a: f (x) = −x2 + 3x − 2 over [1, 3]

1 Step 1: Find the derivative f ′(x).

f ′(x) =

2 Step 2: Solve f ′(x) = 0 to find the critical numbers.

f ′(x) = 0 ⇒ x =

3 Step 3: Evaluate f (x) at the critical points and endpoints x = 1 and
x = 3.

f (1) = f (3) =

4 Step 4: Compare the values and determine the absolute maximum
and minimum.

Max: Min:
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Locating Absolute Extrema for Function b

Function b: f (x) = x2 − 3x2/3 over [0, 2]

1 Step 1: Find the derivative f ′(x).

f ′(x) =

2 Step 2: Solve f ′(x) = 0 to find the critical numbers.

f ′(x) = 0 ⇒ x =

3 Step 3: Evaluate f (x) at the critical points and endpoints x = 0 and
x = 2.

f (0) = f (2) =

4 Step 4: Compare the values and determine the absolute maximum
and minimum.

Max: Min:
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Locating Absolute Extrema

Find the absolute maximum and absolute minimum of f (x) = x2 − 4x + 3
over the interval [1, 4].

1 Step 1: Find the derivative f ′(x).

f ′(x) =

2 Step 2: Solve f ′(x) = 0 to find the critical numbers.

f ′(x) = 0 ⇒ x =

3 Step 3: Evaluate f (x) at the critical points and the endpoints x = 1
and x = 4.

f (1) = f (4) =

4 Step 4: Compare the values to determine the absolute maximum and
minimum.

Max: Min:
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Formula for the Maximum or Minimum of a Quadratic

Problem: In precalculus, you learned a formula for the position of the
maximum or minimum of a quadratic equation y = ax2 + bx + c , which
was:

m = − b

2a
Prove this formula using calculus.

1 Step 1: Start with the given quadratic function:

y = ax2 + bx + c

2 Step 2: Find the derivative of y , y ′(x).

y ′(x) =

3 Step 3: Set y ′(x) = 0 and solve for x to find the critical point.

0 = ⇒ x =

4 Step 4: Conclude that the critical point x = −b
2a gives the position of

the maximum or minimum.
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Key Concepts

A function may have both an absolute maximum and an absolute
minimum, have just one absolute extremum, or have no absolute
maximum or absolute minimum.

If a function has a local extremum, the point at which it occurs must
be a critical number. However, a function need not have a local
extremum at a critical number.

A continuous function over a closed, bounded interval has an absolute
maximum and an absolute minimum. Each extremum occurs at a
critical number or an endpoint.
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Meam Value Thorem
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Learning Objectives

Explain the meaning of Rolle’s theorem.

Describe the significance of the Mean Value Theorem.

State three important consequences of the Mean Value Theorem.
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Rolle’s Theorem

Definition

If the outputs of a differentiable function f are equal at the endpoints of
an interval, there must be an interior point c where f ′(c) = 0.

Visual Illustration

See the figure with parabolas and sine wave, illustrating different cases of
Rolle’s theorem.
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Formal Statement of Rolle’s Theorem

Statement

Let f be a

Continuous function over the closed interval [a, b] and

Differentiable over the open interval (a, b) such that f (a) = f (b).

Then, there exists at least one c ∈ (a, b) such that f ′(c) = 0.
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Using Rolle’s Theorem

Example

For the function f (x) = x2 + 2x over [−2, 0], verify the criteria of Rolle’s
theorem and find the value c where f ′(c) = 0.

Solution

Since f (x) is continuous and differentiable on the interval, and
f (−2) = f (0) = 0, there exists a point c = −1 where f ′(c) = 0.
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Example : Using Rolle’s Theorem

Problem: Let f (x) = x2 − 4x + 4 on the interval [0, 4]. Verify that f
satisfies the conditions of Rolle’s theorem and find the point c such that
f ′(c) = 0.
Solution:

1 Check continuity and differentiability:
f (x) = x2 − 4x + 4 is a polynomial, so it is continuous and
differentiable on [0, 4].

2 Verify endpoint equality:
f (0) = 4 and f (4) = 4. Since f (0) = f (4), the conditions of Rolle’s
theorem are satisfied.

3 Differentiate f (x):
f ′(x) = 2x − 4.

4 Set f ′(c) = 0 and solve for c:
2c − 4 = 0 ⇒ c = 2.

5 Conclusion:
There exists a point c = 2 such that f ′(c) = 0, which satisfies Rolle’s
theorem.
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Example : Verifying Conditions for Rolle’s Theorem

Problem: Let f (x) = x3 − 3x + 2 over [−2, 2]. Determine if Rolle’s
theorem applies and find the value(s) of c if applicable.
Solution:

1 Continuity and Differentiability:
f (x) = x3 − 3x + 2 is a polynomial, so it is continuous and
differentiable on [−2, 2].

2 Check endpoint equality:
f (−2) = 0 and f (2) = 0, so f (−2) = f (2).

3 Differentiate f (x): f ′(x) = 3x2 − 3.

4 Solve f ′(c) = 0:

3c2 − 3 = 0 ⇒ c2 = 1 ⇒ c = ±1.

5 Conclusion:
The points c = 1 and c = −1 satisfy f ′(c) = 0, as required by Rolle’s
theorem.
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Exercise

Problem: Let f (x) = x2 − 5x + 6 on [1, 3]. Use Rolle’s theorem to verify
the conditions and find the value(s) of c if possible.

Solution:

1 Continuity and Differentiability:

2 Verify endpoint equality:

3 Differentiate f (x):

4 Solve f ′(c) = 0:

5 Conclusion:
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Rolle’s Theorem: Importance of Differentiability

Example: Let f (x) = |x | − 1 on [−1, 1].

f (x) is continuous on [−1, 1] and f (−1) = f (1) = 0.

However, f is not differentiable at x = 0.

Conclusion

Since f is not differentiable at x = 0, Rolle’s theorem does not apply.
There is no c ∈ (−1, 1) such that f ′(c) = 0.
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Using Rolle’s Theorem

Problem: For each of the following functions, verify that the function
satisfies the criteria of Rolle’s theorem and find all values c in the given
interval where f ′(c) = 0.

a. f (x) = x2 + 2x over [−2, 0]
Solution Steps:

1 Check continuity and differentiability:

2 Verify endpoint equality:
f (−2) = , f (0) =
Since f (−2) = f (0), the conditions are satisfied.

3 Differentiate f (x):
f ′(x) =

4 Set f ′(c) = 0 and solve for c:
f ′(c) = 0 ⇒ c =
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b. f (x) = x3 − 4x over [−2, 2]
Solution Steps:

1 Check continuity and differentiability:

2 Verify endpoint equality:
f (−2) = , f (2) =
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3 Differentiate f (x):
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The Mean Value Theorem (MVT)

Statement

Let f be continuous over the closed interval [a, b] and differentiable over
the open interval (a, b). Then there exists a point c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)

b − a
.
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Applying the Mean Value Theorem

Example

For the function f (x) =
√
x over [0, 9], find the point c such that f ′(c)

equals the slope of the secant line between (0, f (0)) and (9, f (9)).

Solution

The slope of the secant line is 3
9 = 1

3 . We find c = 9
4 such that f ′(c) = 1

3 .
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Example 2: Applying the Mean Value Theorem

Problem: Let f (x) =
√
x on the interval [1, 4]. Use the Mean Value

Theorem to find the value c such that f ′(c) equals the slope of the secant
line between (1, f (1)) and (4, f (4)). Solution:

1 Verify continuity and differentiability:
f (x) =

√
x is continuous on [1, 4] and differentiable on (1, 4).

2 Calculate the secant slope:

slope =
f (4)− f (1)

4− 1
=

2− 1

3
=

1

3
.

3 Differentiate f (x): f ′(x) = 1
2
√
x
.

4 Set f ′(c) = 1
3 and solve for c:

1

2
√
c
=

1

3
⇒

√
c =

3

2
⇒ c =

9

4
.

5 Conclusion: At c = 9
4 , the tangent slope equals the secant slope,

satisfying the Mean Value Theorem.
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Exercise

Problem: Let f (x) = x2 + x − 12 on [2, 6]. Use the Mean Value Theorem
to find c such that f ′(c) equals the secant slope.

Solution:

1 Continuity and Differentiability:

2 Calculate the secant slope:

3 Differentiate f (x):

4 Set f ′(c) equal to the secant slope and solve for c:

5 Conclusion:
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Mean Value Theorem and Inequalities

Problem

Use the Mean Value Theorem to show that if x > 0, then sin x ≤ x .

Solution Step 1: Define the function and interval.
f (x) = sin x − x . To show that f (x) ≤ 0, we consider the interval [0, x ].
Step 2: Check continuity and differentiability. The function f is the
difference of a trigonometric function and a polynomial. Thus, f is continuous on
[0, x ] and differentiable on (0, x).
Step 3: Calculate the derivative of f (x). We find that f ′(x) = cos x − 1.
Step 4: Apply the Mean Value Theorem. By the Mean Value Theorem, there
exists a point c ∈ (0, x) such that

f ′(c) =
f (x)− f (0)

x − 0
=

f (x)

x
.

Step 5: Analyze f ′(c) to conclude.
Since f ′(c) = cos c − 1 ≤ 0 (because cos c ≤ 1 for all c), and x > 0, we conclude
that f (x) ≤ 0. Therefore, sin x ≤ x .
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Problem: Ball Dropped from a Height

Problem: A ball is dropped from a height of 200 ft. Its position at time t
is s(t) = −16t2 + 200. Find the time t when the instantaneous velocity
equals the average velocity.

Hint

1. Find the time it takes for the ball to hit the ground.
2. Calculate the average velocity.

Solution Step 1: Time to hit the ground

s(t) = 0 ⇒ −16t2 + 200 = 0 ⇒ t =
5
√
2

2
.

Step 2: Average velocity vavg =
s(t)−s(0)

t = −40
√
2 ft/sec.

Step 3: Instantaneous velocity
s ′(t) = −32t. Set s ′(t) = −40

√
2:

−32t = −40
√
2 ⇒ t =

5
√
2

2
seconds.
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Corollaries of the Mean Value Theorem

Corollary 1: Functions with a Derivative of Zero

Let f be differentiable over an interval I . If f ′(x) = 0 for all x ∈ I , then
f (x) is constant for all x ∈ I .

Corollary 2: Constant Difference Theorem

If f and g are differentiable over an interval I and f ′(x) = g ′(x) for all
x ∈ I , then

f (x) = g(x) + C

for some constant C .
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Corollaries of the Mean Value Theorem

Key Corollaries

If f ′(x) = 0 over an interval I , then f is constant over I .

If f ′(x) > 0 over I , then f is increasing over I .

If f ′(x) < 0 over I , then f is decreasing over I .
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Key Concepts

Rolle’s Theorem

If f is continuous over [a, b] and differentiable over (a, b), and f (a) = f (b) = 0,
then there exists a point c ∈ (a, b) such that f ′(c) = 0.

Mean Value Theorem (MVT)

If f is continuous over [a, b] and differentiable over (a, b), then there exists a
point c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)

b − a
.

Constant Function Property

If f ′(x) = 0 over an interval I , then f is constant over I .

Equality of Derivatives Implies Constant Difference

If two differentiable functions f and g satisfy f ′(x) = g ′(x) over an interval I ,
then f (x) = g(x) + C for some constant C .
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Key Concepts

Monotonicity

If f ′(x) > 0 over an interval I , then f is increasing over I . If f ′(x) < 0
over I , then f is decreasing over I .
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Derivatives and the Shape of a
Graph

Clotilde Djuikem
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Learning Objectives

Explain how the sign of the first derivative affects the shape of a
function’s graph.

State the first derivative test for identifying critical numbers.

Use concavity and inflection points to explain how the sign of the
second derivative affects the shape of a function’s graph.

Explain the concavity test for a function over an open interval.

Describe the relationship between a function and its first and second
derivatives.

State the second derivative test for identifying local extrema.
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Graph of function and sign of derivative
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Graph
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First Derivative Test

First Derivative Test

Suppose that f is a continuous function over an interval I containing a
critical number c . If f is differentiable over I , except possibly at c, then
f (c) satisfies one of the following conditions:

1 If f ′ changes sign from positive to negative at c , then f (c) is a local
maximum.

2 If f ′ changes sign from negative to positive at c , then f (c) is a local
minimum.

3 If f ′ has the same sign on both sides of c , then f (c) is not a local
extremum.
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Problem-Solving Strategy: First Derivative Test

For a continuous function f over interval I :

1 Identify Critical Numbers: Find points where f ′(x) = 0 or f ′(x) is
undefined.

2 Determine f ′ Sign in Each Subinterval:
Select a test point in each subinterval.
Check if f ′(x) is positive (increasing) or negative (decreasing).

3 Conclude Local Behavior at Each Critical Number:
f ′ changes + → −: local max.
f ′ changes − → +: local min.
f ′ does not change: no extremum.
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Finding Local Extrema Using the First Derivative Test

Problem: Use the first derivative test to find the location of all local
extrema for f (x) = x3 − 3x2 − 9x − 1. Confirm your results using a
graphing utility. Solution Steps:

1 Find the derivative: f ′(x) = 3x2 − 6x − 9.

2 Set f ′(x) = 0 and solve for x :

3x2 − 6x − 9 = 0 ⇒ x2 − 2x − 3 = 0 ⇒ (x − 3)(x + 1) = 0

Critical points: x = 3 and x = −1.

3 Test the sign of f ′ around each critical point:

x Interval (−∞,−1) (−1, 3) (3,∞)
Test Point x −2 0 4

f ′(x) + (positive) − (negative) + (positive)
f (x) Behavior Increasing Decreasing Increasing

4 Determine local extrema:

f ′ changes from positive to negative at x = −1: local maximum.
f ′ changes from negative to positive at x = 3: local minimum.
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Confirm results with a graphing utility.
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Finding Local Extrema Using the First Derivative Test

Problem: Use the first derivative test to locate all local extrema for
f (x) = −x3 + 3

2x
2 + 18x .

Solution Steps:
1 Find the derivative: f ′(x) = −3x2 + 3x + 18
2 Set f ′(x) = 0 and solve for x :

−3x2 + 3x + 18 = 0 ⇒ x2 − x − 6 = 0 ⇒ (x − 3)(x + 2) = 0

Critical points: x = 3 and x = −2.
3 Test the sign of f ′ around each critical point:

x Interval (−∞,−2) (−2, 3) (3,∞)

Test Point x −3 0 4

f ′(x) + (positive) − (negative) + (positive)

f (x) Behavior Increasing Decreasing Increasing
4 Determine local extrema:

f ′ changes from positive to negative at x = −2: local maximum.
f ′ changes from negative to positive at x = 3: local minimum.

5 Confirm results with a graphing utility: Plot f (x) to verify the
local maximum at x = −2 and local minimum at x = 3.
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Using the First Derivative Test

Problem: Use the first derivative test to find the location of all local
extrema for f (x) = 5x1/3 − x5/3. Confirm your results using a graphing
utility. Solution Steps:

1 Find the derivative:

f ′(x) =
5

3
x−2/3 − 5

3
x2/3 =

5

3

(
x−2/3 − x2/3

)
=

5

3
· 1− x

x2/3

2 Set f ′(x) = 0 and solve for x : 5
3 · 1−x

x2/3 = 0 ⇒ 1− x = 0 Critical point:
x = 1. Note that f ′(x) is undefined at x = 0, so x = 0 is also a critical
point.

3 Test the sign of f ′ around each critical point:

x Interval (−∞, 0) (0, 1) (1,∞)
Test Point x −1 0.5 2

f ′(x) − (negative) + (positive) − (negative)
f (x) Behavior Decreasing Increasing Decreasing

4 Determine local extrema:

f ′ changes from negative to positive at x = 0: local minimum.
f ′ changes from positive to negative at x = 1: local maximum.
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Confirm results with a graphing utility

Graph

Confirm results with a graphing utility: Plot f (x) to verify the local
minimum at x = 0 and local maximum at x = 1.

Since f is decreasing over the interval (−∞,−1) and increasing over
(−1, 0), f has a local minimum at x = −1. Since f is increasing over both
(−1, 0) and (0, 1), f does not have a local extremum at x = 0. Since f is
increasing over (0, 1) and decreasing over (1,∞), f has a local maximum
at x = 1. These analytical results are confirmed by the following graph.
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Using the First Derivative Test

Problem: Use the first derivative test to find all local extrema for
f (x) = 3

√
x − 1.

Hint: The only critical number of f is x = 1.

Solution Steps:

1 Find the derivative:

f ′(x) =
1

3
x−2/3 =

1

3
3
√
x2

2 Identify critical points: f ′(x) is undefined at x = 0 and equal to
zero at x = 1. Thus, the critical number is x = 1.

3 Test the sign of f ′ around x = 1:
For x = 0.5 (left of x = 1): f ′(0.5) = 1

3· 3√
0.52

> 0 (positive).

For x = 2 (right of x = 1): f ′(2) = 1

3· 3√
22

> 0 (positive).

4 Conclusion: Since f ′(x) is positive on both sides of x = 1, there is
no local extremum at x = 1.
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Definition

Concavity of a Function

Let f be a function that is differentiable over an open interval I .

If f ′ is increasing over I , we say f is concave up over I .

If f ′ is decreasing over I , we say f is concave down over I .
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Test for Concavity with Examples

Concavity Test

Let f be a function that is twice differentiable over an interval I .

1 If f ′′(x) > 0 for all x ∈ I , then f is concave up over I .

2 If f ′′(x) < 0 for all x ∈ I , then f is concave down over I .

Examples:

Example 1: f (x) = x2

f ′(x) = 2x , f ′′(x) = 2
Since f ′′(x) = 2 > 0 for all x , f (x) = x2 is concave up everywhere.

Example 2: f (x) = −x2

f ′(x) = −2x , f ′′(x) = −2
Since f ′′(x) = −2 < 0 for all x , f (x) = −x2 is concave down
everywhere.
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Definition of an Inflection Point

Inflection Point

If f is continuous at a and f changes concavity at a, then the point
(a, f (a)) is an inflection point of f .

Example 1: Determine the inflection points of f (x) = x3 − 3x2 + 4.

Find f ′′(x) and set it equal to zero to find potential inflection points.
Verify if f changes concavity at these points.

Solution:

f ′(x) = 3x2 − 6x
f ′′(x) = 6x − 6
Set f ′′(x) = 0 ⇒ x = 1
Check concavity around x = 1:

f ′′(x) > 0 for x > 1 (concave up)
f ′′(x) < 0 for x < 1 (concave down)

Conclusion: (1, f (1)) = (1, 2) is an inflection point.
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Second Derivative Test

Second Derivative Test

Suppose f ′(c) = 0 and f ′′(x) is continuous over an interval containing c.

1 If f ′′(c) > 0, then f has a local minimum at c.

2 If f ′′(c) < 0, then f has a local maximum at c .

3 If f ′′(c) = 0, then the test is inconclusive.

Clotilde Djuikem 16 / 22



Using the Second Derivative Test

Problem: Use the second derivative to find the location of all local
extrema for f (x) = x5 − 5x3.

Solution Steps:
1 Find the first derivative:

f ′(x) = 5x4 − 15x2 = 5x2(x2 − 3)

Set f ′(x) = 0: 5x2(x2 − 3) = 0 ⇒ x = 0 and x = ±
√
3 Critical

points: x = 0, x =
√
3, and x = −

√
3.

2 Find the second derivative:

f ′′(x) = 20x3 − 30x = 10x(2x2 − 3)

3 Evaluate f ′′(x) at each critical point:
f ′′(0) = 10 · 0 · (2 · 02 − 3) = 0 (inconclusive).
f ′′(

√
3) = 10

√
3(2 · 3− 3) = 30

√
3 > 0 (local minimum).

f ′′(−
√
3) = 10(−

√
3)(2 · 3− 3) = −30

√
3 < 0 (local maximum).

4 Conclusion:
f (x) has a local minimum at x =

√
3.

f (x) has a local maximum at x = −
√
3.

The second derivative test is inconclusive at x = 0.
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The second derivative is inconcluse

Conclusion: Since f ′ is negative on both intervals around x = 0, f is
decreasing across x = 0. Therefore, f does not have a local
extremum at x = 0.

The graph confirms these results.
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Example 1: Polynomial Function

Problem: Use the second derivative test to find the location of all local
extrema for f (x) = x4 − 4x2.

Solution Steps:
1 Find the First Derivative:

f ′(x) = 4x(x2 − 2) ⇒ x = 0,±
√
2

Critical points: x = 0 and x = ±
√
2.

2 Find the Second Derivative:

f ′′(x) = 12x2 − 8

3 Evaluate f ′′(x) at Each Critical Point:
f ′′(0) = −8: local maximum at x = 0.
f ′′(±

√
2) = 16: local minima at x = ±

√
2.

4 Conclusion:
Local maximum at x = 0.
Local minima at x = ±

√
2.
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Example 2: Exponential Function

Problem: Use the second derivative test to find the location of all local
extrema for f (x) = e−x2 .

Solution Steps:
1 Find the First Derivative:

f ′(x) = −2xe−x2

Set f ′(x) = 0: Critical point is x = 0.
2 Find the Second Derivative:

f ′′(x) = (4x2 − 2)e−x2

3 Evaluate f ′′(x) at the Critical Point x = 0:

f ′′(0) = −2 ⇒ local maximum at x = 0

4 Conclusion:
Local maximum at x = 0.
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Example 3: Trigonometric Function

Problem: Use the second derivative test to find the location of all local
extrema for f (x) = sin(x) + cos(x) over the interval [0, 2π].

Solution Steps:
1 Find the First Derivative:

f ′(x) = cos(x)− sin(x)

Set f ′(x) = 0: Solving cos(x) = sin(x) gives critical points x = π
4 and

x = 5π
4 .

2 Find the Second Derivative:

f ′′(x) = − sin(x)− cos(x)

3 Evaluate f ′′(x) at Each Critical Point:
f ′′

(
π
4

)
= −

√
2: local maximum at x = π

4 .

f ′′
(
5π
4

)
=

√
2: local minimum at x = 5π

4 .
4 Conclusion:

Local maximum at x = π
4 .

Local minimum at x = 5π
4 .
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Key Concepts

Critical Points and Sign of f ′

If c is a critical number of f and f ′(x) > 0 for x < c and f ′(x) < 0
for x > c, then f has a local maximum at c .

If c is a critical number of f and f ′(x) < 0 for x < c and f ′(x) > 0
for x > c, then f has a local minimum at c .

Concavity

If f ′′(x) > 0 over an interval I , then f is concave up over I .

If f ′′(x) < 0 over an interval I , then f is concave down over I .

Second Derivative Test

If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c .

If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c .

If f ′(c) = 0 and f ′′(c) = 0, use the First Derivative Test or evaluate
f ′(x) at points around c to determine if f has a local extremum at c .
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Applied Optimization Problems
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Learning Objective

Set up and solve optimization problems in several applied fields.
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Maximizing the Area of a Garden

A rectangular garden is to be constructed using a rock wall as one side of
the garden and wire fencing for the other three sides . Given 100 ft of wire
fencing, determine the dimensions that would create a garden of maximum
area. What is the maximum area?
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Problem Setup

Objective: Maximize the area of a rectangular garden.

Let:

x : Length of the side perpendicular to the rock wall.

y : Length of the side parallel to the rock wall.

Given:

Total fencing available: 100 ft.

Area of the garden: A = x · y .
Constraint: 2x + y = 100.
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Step 1: Express Area in Terms of One Variable

From the constraint equation:

2x + y = 100 =⇒ y = 100− 2x .

Substitute y = 100− 2x into A = x · y :

A(x) = x · (100− 2x) = 100x − 2x2.

Thus, the area is given by:

A(x) = 100x − 2x2.
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Step 2: Determine the Domain

To construct a rectangular garden:

Both x and y must be positive:

x > 0 and y = 100− 2x > 0.

This implies x < 50.

Therefore, the domain for x is:

0 < x < 50.

To use the Extreme Value Theorem, we extend this to the closed interval:

[0, 50].
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Step 3: Find the Critical Number

Differentiate A(x) = 100x − 2x2:

A′(x) = 100− 4x .

Set A′(x) = 0 to find the critical number:

100− 4x = 0 =⇒ x = 25.

The critical number is x = 25.
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Step 4: Evaluate the Area

Evaluate A(x) at the endpoints and critical number:

At x = 0: A(0) = 100(0)− 2(0)2 = 0.

At x = 50: A(50) = 100(50)− 2(50)2 = 0.

At x = 25:

A(25) = 100(25)− 2(25)2 = 2500− 1250 = 1250 ft2.

Maximum Area: 1250 ft2 occurs at x = 25.
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Solution Summary

Optimal Dimensions:

x = 25 ft (perpendicular to the rock wall).

y = 100− 2(25) = 50 ft (parallel to the rock wall).

Maximum Area:

A = x · y = 25 · 50 = 1250 ft2.

Conclusion: To maximize the area, construct a garden with dimensions
25 ft× 50 ft.
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Problem-Solving Strategy: Optimization Problems

Step-by-Step Approach:
1 Introduce all variables: Define variables and, if applicable, draw and

label a diagram.
2 Identify the target quantity: Determine what needs to be

maximized or minimized and specify the range of possible values for
other variables.

3 Write the formula: Express the quantity to optimize in terms of the
variables.

4 Relate variables: Use additional equations or constraints to rewrite
the formula as a function of one variable.

5 Determine the domain: Identify valid values for the variable(s)
based on the physical context of the problem.

6 Find the optimal value: Differentiate the function, locate critical
numbers, and justify the maximum or minimum using appropriate
methods.

7 State the final answer: Provide a clear sentence with units,
ensuring the solution satisfies the problem’s constraints.
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Maximizing the Volume of a Box

An open-top box is to be made from a 24 in. by 36 in. piece of cardboard
by removing a square from each corner of the box and folding up the flaps
on each side. What size square should be cut out of each corner to get a
box with the maximum volume?
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Problem Setup and Volume Function

Objective: Maximize the volume of an open-top box formed by cutting
squares from a rectangular sheet.

Setup:

Dimensions of cardboard: 36 in by 24 in.
x : Side length of the square cut from each corner (in inches).
Box dimensions after folding:

Height: x ,
Length: 36− 2x ,
Width: 24− 2x .

Volume formula:

V (x) = (36− 2x)(24− 2x)x = 4x3 − 120x2 + 864x .
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Domain and Critical Numbers

Domain:

x > 0 (side length must be positive).

x < 12 (squares cannot exceed half the shorter side).

Domain: x ∈ [0, 12].

Find Critical Numbers:

V ′(x) = 12x2 − 240x + 864.

Solve V ′(x) = 0:

12x2 − 240x + 864 = 0 =⇒ x2 − 20x + 72 = 0.

Using the quadratic formula:

x = 10± 2
√
7.

Valid Critical Point: x = 10− 2
√
7 ≈ 4.708.
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Maximum Volume and Final Answer

Maximum Volume:

V (10− 2
√
7) = 4(10− 2

√
7)3 − 120(10− 2

√
7)2 + 864(10− 2

√
7).

Approximation:
V ≈ 1825 in3.

Optimal Dimensions:

Height: x ≈ 4.708 in,

Length: 36− 2x ≈ 26.584 in,

Width: 24− 2x ≈ 14.584 in.

Final Answer: The maximum volume is approximately 1825 in3 with
optimal dimensions as listed above.
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Minimizing Travel Time

An island is located 2mi due north of its closest point along a straight
shoreline. A visitor is staying at a cabin on the shore, which is 6mi west of
that closest point. The visitor plans to travel from the cabin to the island.

Suppose the visitor:

Runs at a speed of 8mph,

Swims at a speed of 3mph.

Question: How far should the visitor run along the shoreline before
swimming to minimize the total time it takes to reach the island?
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Solution

Let x be the distance running and let y be the distance swimming . Let T
be the time it takes to get from the cabin to the island.

Clotilde Djuikem 16 / 39



Step 2: The problem is to minimize T .
Step 3: To find the time spent traveling from the cabin to the island, add
the time spent running and the time spent swimming. Since Distance
= Rate× Time, the time spent running is:

Trunning =
Drunning

Rrunning
=

x

8
,

and the time spent swimming is:

Tswimming =
Dswimming

Rswimming
=

y

3
.

Therefore, the total time spent traveling is:
T =

x

8
+

y

3
.

Step 4: From (Figure), the line segment of y miles forms the hypotenuse
of a right triangle with legs of length 2mi and 6− x mi. Therefore, by the
Pythagorean theorem:

22 + (6− x)2 = y2,

and we obtain:

y =
√

(6− x)2 + 4.
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Solution

Thus, the total time spent traveling is given by the function:

T (x) =
x

8
+

√
(6− x)2 + 4

3
.

Step 5: From (Figure), we see that 0 ≤ x ≤ 6. Therefore, [0, 6] is the
domain of consideration.
Step 6: Finding Critical Numbers
Since T (x) is a continuous function over a closed, bounded interval, it has
a maximum and a minimum. Let’s begin by looking for any critical
numbers of T over the interval [0, 6]. The derivative is:

T ′(x) =
1

8
− 1

2

[
(6− x)2 + 4

]−1/2 · 2(6− x) =
1

8
− (6− x)

3
√
(6− x)2 + 4

.

If T ′(x) = 0, then:
1

8
=

6− x

3
√
(6− x)2 + 4

.

Clotilde Djuikem 18 / 39



Therefore:

3
√
(6− x)2 + 4 = 8(6− x).

Squaring both sides of this equation, we see that if x satisfies this
equation, then x must satisfy:

9
[
(6− x)2 + 4

]
= 64(6− x)2,

which implies:
55(6− x)2 = 36.

We conclude that if x is a critical number, then x satisfies:

(6− x)2 =
36

55
.

Therefore, the possibilities for critical numbers are:

x = 6± 6√
55

.
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Since x = 6 + 6√
55

is not in the domain, it is not a possibility for a critical

number. On the other hand, x = 6− 6√
55

is in the domain. Since we

squared both sides to arrive at the possible critical numbers, it remains to
verify that x = 6− 6√

55
satisfies the equation.

Since x = 6− 6√
55

does satisfy that equation, we conclude that it is the

critical number.

x = 6± 6√
55

.

Since x = 6 + 6√
55

is not in the domain, it is not a possibility for a critical

number. On the other hand, x = 6− 6√
55

is in the domain. Since we

squared both sides to arrive at the possible critical numbers, it remains to
verify that x = 6− 6√

55
satisfies the equation.
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Solution

Since x = 6− 6√
55

does satisfy that equation, we conclude that:

x = 6− 6√
55

is a critical number, and it is the only one. To justify that the time is
minimized for this value of x , we just need to check the values of T (x) at
the endpoints x = 0 and x = 6, and compare them with the value of T (x)
at the critical number x = 6− 6√

55
.

We find that:

T (0) ≈ 2.108 h, T (6) ≈ 1.417 h, whereas T (6− 6√
55

) ≈ 1.368 h.

Therefore, we conclude that T has a local minimum at:

x ≈ 5.19mi.
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Maximizing Revenue

Owners of a car rental company have determined that if they charge
customers p dollars per day to rent a car, where 50 ≤ p ≤ 200, the
number of cars n they rent per day can be modeled by the linear function:

n(p) = 1000− 5p.

- If they charge 50perdayorless, theywillrentalltheircars.− Iftheycharge200
per day or more, they will not rent any cars.

Assuming the owners plan to charge customers between 50perdayand200
per day to rent a car, how much should they charge to maximize their
revenue?
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Step 1: Problem Setup

Objective: Maximize the daily revenue of a car rental company.

Variables:

p: Price charged per car per day (50 ≤ p ≤ 200).

n: Number of cars rented per day.

R: Revenue per day.

Model:

n(p) = 1000− 5p: Linear function modeling the number of cars
rented as a function of p.

Revenue formula: R = n × p.

Clotilde Djuikem 23 / 39



Step 2: Revenue Function

The revenue (per day) is given by:

R(p) = n(p)× p.

Substituting n(p) = 1000− 5p:

R(p) = (1000− 5p)p = −5p2 + 1000p.

Goal: Maximize R(p) for p in the interval [50, 200].
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Step 3: Critical Numbers

To maximize R(p), find its derivative and solve R ′(p) = 0:

R ′(p) = −10p + 1000.

Setting R ′(p) = 0:

−10p + 1000 = 0 =⇒ p = 100.

Critical Point: p = 100.
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Step 4: Evaluate Revenue at Endpoints

Evaluate R(p) at the critical point and the endpoints of the interval
[50, 200]:

At p = 100:

R(100) = −5(100)2 + 1000(100) = $50, 000.

At p = 50:

R(50) = −5(50)2 + 1000(50) = $37, 500.

At p = 200:

R(200) = −5(200)2 + 1000(200) = $0.
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Step 5: Conclusion

Result:

The revenue is maximized at p = 100.

Maximum revenue: R(100) = $50, 000.

Recommendation:

The car rental company should charge $100 per day per car to
maximize daily revenue.
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Problem Statement

Maximizing the Area of an Inscribed Rectangle
A rectangle is to be inscribed in the ellipse:

x2

4
+ y2 = 1

Determine:

The dimensions of the rectangle that maximize its area.

The maximum area.
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Step 1: Geometry of the Problem

The ellipse x2

4 + y2 = 1 has x-intercepts ±2 and y -intercepts ±1.

An inscribed rectangle has:

Length L = 2x (horizontal).
Width W = 2y (vertical).

The area of the rectangle is:

A = L ·W = 2x · 2y = 4xy
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Step 2: Substituting Constraints

From the ellipse equation:

x2

4
+ y2 = 1 =⇒ y =

√
1− x2

4

Substitute y into the area formula:

A = 4x

√
1− x2

4
= 2x

√
4− x2
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Step 3: Domain and Critical Points

x ∈ [0, 2] (rectangle in the first quadrant).

The derivative of A(x) is:

A′(x) =
d

dx

(
2x

√
4− x2

)
Simplifying:

A′(x) =
8− 4x2√
4− x2

Solve A′(x) = 0 to find critical points:

8− 4x2 = 0 =⇒ x2 = 2 =⇒ x =
√
2
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Step 4: Dimensions and Maximum Area

At x =
√
2:

y =

√
1− x2

4
=

√
1− 2

4
=

1√
2

Dimensions of the rectangle:

L = 2x = 2
√
2, W = 2y =

√
2

Maximum area:
A = L ·W = (2

√
2)(

√
2) = 4
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Optimization Example: Box Surface Area

Problem: Minimize the surface area of an open-top rectangular box with
volume 216 in3.

Surface Area:
S(x) = 4xy + x2

Volume Constraint:

x2y = 216 =⇒ y =
216

x2

Substitute y into S(x):

S(x) = 864/x + x2
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PSS: Justify a Maximum or Minimum on an Open Interval

Step 1: Analyze the Limits

Take the limit of the function as the variable approaches the endpoints of
the interval.

If both limits are less than the function value at the critical number, the
largest value at the critical points is the absolute maximum (similar for
minimum).

If at least one limit is larger (or smaller) than the critical values or diverges
to infinity, then no maximum (or minimum) exists.

Step 2: Check Monotonicity

Verify if the function is increasing to the left of the critical number and
decreasing to the right (or vice versa).

If true, the critical number corresponds to an absolute maximum (or
minimum).

Step 3: Verify with Critical Numbers

If there is only one critical number on the interval, and the function has a
local maximum (or minimum) at this value, it is also the absolute
maximum (or minimum).
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Minimizing Surface Area

A rectangular box with a square base, an open top, and a volume of 216
in. 3 is to be constructed. What should the dimensions of the box be to
minimize the surface area of the box? What is the minimum surface area?
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Solution: Step 1

Step 1: Draw a rectangular box and introduce the variable x to represent
the length of each side of the square base; let y represent the height of the
box. Let S denote the surface area of the open-top box.
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Solution: Steps 2-4

Step 2: We need to minimize the surface area. Therefore, we need to
minimize S .
Step 3: Since the box has an open top, we need only determine the area
of the four vertical sides and the base.

The area of each of the four vertical sides is x · y .
The area of the base is x2.

Therefore, the surface area of the box is:

S = 4xy + x2

Step 4: Since the volume of this box is x2y and the volume is given as
216 in.3, the constraint equation is:

x2y = 216

Solving the constraint equation for y , we have y = 216
x2

. Therefore, we can
write the surface area as a function of x only:

S(x) = 4x

(
216

x2

)
+ x2

S(x) =
864

x
+ x2
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Solution: Steps 5 and 6

Step 5: Domain Analysis

Since x2y = 216, x > 0 and x is unbounded. Domain: (0,∞).

As x → 0+ or x → ∞, S(x) → ∞. Therefore, S(x) must have an
absolute minimum on (0,∞).

Step 6: Finding the Minimum

Derivative: S ′(x) = −864
x2

+ 2x .

Solve S ′(x) = 0: x3 = 432 =⇒ x = 6 3
√
2.

At x = 6 3
√
2, y = 216

(6 3√2)2
= 3 3

√
2.

Results:
x = 6

3
√
2 in., y = 3

3
√
2 in., S = 108

3
√
4 in.2
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Key Concepts for Solving Optimization Problems

1 Draw a Picture: Begin by drawing a diagram to visualize the
problem and introducing variables to represent key quantities.

2 Relate the Variables: Find an equation that relates the variables in
the problem.

3 Define the Function: Write the quantity to be minimized or
maximized as a function of a single variable.

4 Find Critical Numbers: Compute the derivative, find critical
numbers, and determine the local extrema.
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Curve Sketching (omit oblique
asymptotes)
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Learning Objectives

Objective 1: Analyze a function and its derivatives to draw its graph.

Objective 2: Integrate the use of the first and second derivatives
with other features of a function to create an accurate graph of f (x).

Description:
In this section, we explore a comprehensive approach to graphing functions.
By combining knowledge of derivatives with other analytical tools, you will
be able to sketch the shape and key features of any given function.
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Problem-Solving Strategy: Drawing the Graph of a
Function

Steps:
1 Determine the Domain: Identify all x-values for which the function

is defined.
2 Intercepts: Locate x- and y -intercepts.
3 End Behavior: Evaluate limx→∞ f (x) and limx→−∞ f (x) to find

horizontal or oblique asymptotes.
4 Vertical Asymptotes: Check for x-values where the function

approaches ±∞.
5 First Derivative Analysis (f ′(x):

Identify critical points.
Determine intervals of increase and decrease.
Locate local extrema.

6 Second Derivative Analysis (f ′′(x):
Determine concavity (up or down).
Find inflection points.
Confirm or verify extrema.
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Sketching a Graph of a Polynomial

Example: Sketch a graph of f (x) = (x − 1)2(x + 2)
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Step 1: Determine the Domain

Function: f (x) = (x − 1)2(x + 2)

f (x) is a polynomial, so it is defined for all real numbers.

Domain: R (all real numbers).
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Step 2: Locate the Intercepts

y-Intercept:

f (0) = (0− 1)2(0 + 2) = 2 =⇒ Intercept: (0, 2).

x-Intercepts: Solve (x − 1)2(x + 2) = 0:

x = 1 (multiplicity 2), x = −2.

Intercept Points: (1, 0), (−2, 0).
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Step 3: End Behavior

Evaluate limx→∞ f (x) and limx→−∞ f (x):

As x → ∞:

(x − 1)2 → ∞, (x + 2) → ∞ =⇒ lim
x→∞

f (x) = ∞.

As x → −∞:

(x − 1)2 → ∞, (x + 2) → −∞ =⇒ lim
x→−∞

f (x) = −∞.
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Step 4: Vertical Asymptotes

Observation:

f (x) is a polynomial function.

Polynomial functions do not have vertical asymptotes.

Conclusion: No vertical asymptotes exist for f (x).
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Step 5: First Derivative Analysis

First Derivative:

f ′(x) = 3x2 − 3 = 3(x − 1)(x + 1).

Critical Numbers: Solve f ′(x) = 0:

x = 1, x = −1.

Divide the domain into intervals and test f ′(x):

(−∞,−1) : f ′(x) > 0 (increasing).

(−1, 1) : f ′(x) < 0 (decreasing).

(1,∞) : f ′(x) > 0 (increasing).

Local Extrema:

f (−1) = 4 (local max), f (1) = 0 (local min).
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Step 6: Second Derivative and Concavity

Second Derivative:
f ′′(x) = 6x .

Concavity Analysis:

(−∞, 0) : f ′′(x) < 0 (concave down).

(0,∞) : f ′′(x) > 0 (concave up).

Inflection point at x = 0.

Summary of Key Points:

Intervals of increase: (−∞,−1), (1,∞).

Intervals of decrease: (−1, 1).

Local maximum: (−1, 4), local minimum: (1, 0).

Concave up: (0,∞), concave down: (−∞, 0).

Inflection point: (0, f (0)) = (0, 2).
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Graph of f (x) = (x − 1)2(x + 2)

Figure:
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Exercice

Sketching the Graph of f (x) = (x − 1)3(x + 2)
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Step 1: Determine the Domain

Function: f (x) = (x − 1)3(x + 2)

f (x) is a polynomial, so it is defined for all real numbers.

Domain: R (all real numbers).
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Step 2: Locate the Intercepts

y-Intercept:

f (0) = (0− 1)3(0 + 2) = (−1)3(2) = −2.

y-Intercept: (0,−2).

x-Intercepts: Solve (x − 1)3(x + 2) = 0:

x = 1 (multiplicity 3), x = −2 (multiplicity 1).

x-Intercepts: (1, 0), (−2, 0).
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Step 3: Evaluate End Behavior

The degree of f (x) is 4 (even degree), and the leading coefficient is
positive.

As x → ∞:

(x − 1)3 → ∞, (x + 2) → ∞ =⇒ lim
x→∞

f (x) = ∞.

As x → −∞:

(x − 1)3 → −∞, (x + 2) → −∞ =⇒ lim
x→−∞

f (x) = ∞.

Conclusion: Both ends of the graph go to ∞.
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Step 4: Check for Vertical Asymptotes

Observation:

f (x) is a polynomial function.

Polynomial functions do not have vertical asymptotes.

Conclusion: No vertical asymptotes exist for f (x).
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Step 5: Analyze f ′(x)

First Derivative:

f ′(x) = 3(x − 1)2(x + 2) + (x − 1)3 = (x − 1)2(4x + 5).

Critical Numbers: Solve f ′(x) = 0:

(x − 1)2 = 0 =⇒ x = 1.

4x + 5 = 0 =⇒ x = −5
4 .

Divide the domain into intervals and test the sign of f ′(x), the derivative
signed change only with 4x − 5 because (x − 1)2 ≥ 0:

(−∞,−5
4) : f

′(x) > 0 (decreasing).

(−5
4 , 1) : f

′(x) > 0 (increasing).

(1,∞) : f ′(x) > 0 (increasing).
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Step 6: Analyze f ′′(x)

Second Derivative:

f ′′(x) = 6(x − 1)(2x + 1).

Concavity Analysis:

(−∞,−1
2) : f

′′(x) > 0 (concave up).

(−1
2 , 1) : f

′′(x) < 0 (concave down).

(1,∞) : f ′′(x) > 0 (concave up).

Inflection pointx at x = −1
2 and x = 1.

Summary of Key Points:

Intervals of increase: (−5
4 ,∞).

Intervals of decrease: (−∞,−5
4).

Local minimum: At x = −5
4

Concave up: (−∞,−1
2), (1,∞) concave down: (−∞, 0).

Inflection points: (−1
2 , f (−

1
2)) and (1, f (1)).
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Graph of f (x) = (x − 1)3(x + 2)
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Approximating Areas
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Learning Objectives

Use sigma (summation) notation to calculate sums and powers of
integers.

Use the sum of rectangular areas to approximate the area under a
curve.

Use Riemann sums to approximate area.
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Definitions

Proof

Let x such that f (x) = x2

Example

Consider the function f (x) = x
x2+2
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Antiderivatives
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Learning Objectives

Find the general antiderivative of a given function.
Learn to determine the most general form of a function’s antiderivative.

Explain the terms and notation used for an indefinite integral.
Understand key concepts such as the integral sign (

∫
) and the

constant of integration (+C ).

State the power rule for integrals.

Master the rule:
∫
xn dx = xn+1

n+1 + C , where n ̸= −1.

Use antidifferentiation to solve simple initial-value problems.
Apply integration techniques to find specific solutions when initial
conditions are provided.
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Definition and Derivation

Definition

A function F is an antiderivative of the function f if

F ′(x) = f (x)

for all x in the domain of f .

Derivation Example

Let f (x) = 2x . To find the antiderivative F (x), we solve:

F ′(x) = f (x) = 2x .

By integrating, we obtain:

F (x) =

∫
2x dx = x2, F (x) = x2 − 2, F (x) = x2 − 10
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General Form of an Antiderivative

Definition

Let F be an antiderivative of f over an interval I . Then:

1 For each constant C , the function F (x) + C is also an antiderivative
of f over I .

2 If G is an antiderivative of f over I , there is a constant C for which
G (x) = F (x) + C over I .

Key Result

In other words, the most general form of the antiderivative of f over I is:

F (x) + C .
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Functions and Their Antiderivatives

Function f (x) Antiderivative F (x)

4x3 x4 + C

cos(x) sin(x) + C

ex ex + C
1
x ln |x |+ C

sin(x) − cos(x) + C

5 5x + C

x−2 − 1
x + C
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Definition

Definition

Given a function f , the indefinite integral of f , denoted∫
f (x) dx ,

is the most general antiderivative of f . If F is an antiderivative of f , then:∫
f (x) dx = F (x) + C .

The expression f (x) is called the integrand, and the variable x is the
variable of integration.
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Examples

Example

Let f (x) = 3x2. To find its general antiderivative, solve:

F ′(x) = f (x) = 3x2.

Integrating, we obtain:

F (x) =

∫
3x2 dx = x3 + C .

Thus, the general form of the antiderivative is F (x) + C = x3 + C , where
C is a constant.

Example 1: Polynomial Function

Find the general antiderivative of f (x) = 4x3.

F (x) =

∫
4x3 dx =

4x4

4
+ C = x4 + C .
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Examples

Example 2: Trigonometric Function

Find the general antiderivative of f (x) = cos(x).

F (x) =

∫
cos(x) dx = sin(x) + C .

Example 3: Exponential Function

Find the general antiderivative of f (x) = ex .

F (x) =

∫
ex dx = ex + C .

Example 4: Reciprocal Function

Find the general antiderivative of f (x) = 1
x for x > 0.

F (x) =

∫
1

x
dx = ln(x) + C .
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∫
2x dx = x2 + C .

For different values of C
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Differentiation Formulas and Indefinite Integrals

Differentiation Formula Indefinite Integral
d
dx (k) = 0

∫
k dx = kx + C

d
dx (x

n) = nxn−1
∫
xn dx = xn+1

n+1 + C , n ̸= −1
d
dx (ln |x |) =

1
x

∫
1
x dx = ln |x |+ C

d
dx (e

x) = ex
∫
ex dx = ex + C

d
dx (sin x) = cos x

∫
cos x dx = sin x + C

d
dx (csc x) = − csc x cot x

∫
csc x cot x dx = − csc x + C

d
dx (sec x) = sec x tan x

∫
sec x tan x dx = sec x + C

d
dx (cos x) = − sin x

∫
sin x dx = − cos x + C

d
dx (tan x) = sec2 x

∫
sec2 x dx = tan x + C

d
dx (cot x) = − csc2 x

∫
csc2 x dx = − cot x + C

d
dx (sin

−1 x) = 1√
1−x2

∫
1√
1−x2

dx = sin−1 x + C
d
dx (tan

−1 x) = 1
1+x2

∫
1

1+x2
dx = tan−1 x + C

d
dx (sec

−1 |x |) = 1
x
√
x2−1

∫
1

x
√
x2−1

dx = sec−1 |x |+ C
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Properties of Indefinite Integrals

Properties

Let F and G be antiderivatives of f and g , respectively, and let k be any
real number.
Sums and Differences∫

(f (x)± g(x))dx = F (x)± G (x) + C

Constant Multiples ∫
kf (x)dx = kF (x) + C
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Solving an Initial-Value Problem

Problem: Solve the initial-value problem:

dy

dx
= sin x , y(0) = 5.

Solution:

First, solve the differential equation. If

dy

dx
= sin x ,

then

y =

∫
sin(x)dx = − cos x + C .

Apply the initial condition y(0) = 5. Substituting:

− cos(0) + C = 5.

Solve for C :
C = 5 + cos(0) = 6.

Final Solution: y = − cos x + 6.
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Solving an Initial Value Problem

Problem: Solve the initial value problem:

dy

dx
= 3x−2, y(1) = 2.

Solution:

Start by solving the differential equation. Integrate both sides:

y =

∫
3x−2dx = 3

∫
x−2dx = 3

(
−x−1

)
+ C .

Thus,

y = −3

x
+ C .

Use the initial condition y(1) = 2 to find C :

2 = −3

1
+ C =⇒ C = 2 + 3 = 5.

Therefore, the solution to the initial value problem is:

y = −3

x
+ 5.
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Decelerating Car

A car is traveling at the rate of 88 ft/sec (60 mph) when the brakes are
applied. The car begins decelerating at a constant rate of 15 ft/sec2.

a. How many seconds elapse before the car stops?

b. How far does the car travel during that time?
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Decelerating Car Solution

Solution:
a. Time to Stop:

Let t represent time (in seconds), a(t) be the acceleration, v(t) the
velocity, and s(t) the position of the car. The initial velocity is

v(0) = 88 ft/sec, and the deceleration is constant: a(t) = −15 ft/sec2.
From v ′(t) = a(t) = −15, solve the initial-value problem:

v ′(t) = −15, v(0) = 88.

Integrate:

v(t) =

∫
−15 dt = −15t + C .

Using v(0) = 88, solve for C : C = 88, so:

v(t) = −15t + 88.

The car stops when v(t) = 0:

0 = −15t + 88 =⇒ t =
88

15
≈ 5.87 seconds.
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Decelerating Car Solution

Solution:
b. Distance Traveled:

The velocity v(t) is the derivative of the position s(t). Solve the
initial-value problem:

s ′(t) = v(t) = −15t + 88, s(0) = 0.

Integrate:

s(t) =

∫
(−15t + 88) dt = −15

2
t2 + 88t + C .

Using s(0) = 0, solve for C : C = 0, so:

s(t) = −15

2
t2 + 88t.

Evaluate s(t) at t = 88
15 :

s

(
88

15

)
= −15

2

(
88

15

)2

+ 88

(
88

15

)
=

7744

30
≈ 258.133 ft.
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Stopping Distance Problem

Suppose the car is traveling at the rate of 44 ft/sec.

1 How long does it take for the car to stop?

2 How far will the car travel during this time?
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Gravity

A rock is dropped from the top of a building 10 metres above the ground
on Earth.

a. How long until the rock hits the ground?

b. With what velocity does the rock hit the ground?
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Key Concepts

Key Concepts

If F is an antiderivative of f , then every antiderivative of f is of the
form F (x) + C for some constant C .

Solving the initial-value problem

dy

dx
= f (x), y(x0) = y0

requires us first to find the set of antiderivatives of f and then to look
for the particular antiderivative that also satisfies the initial condition.
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