

Related Rates

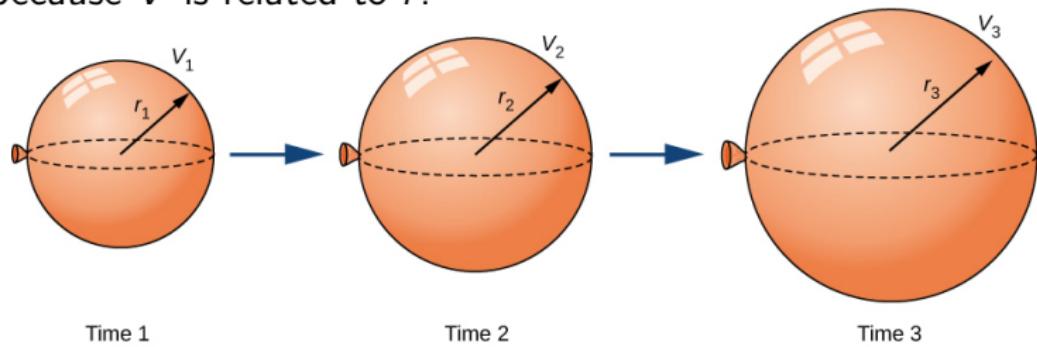
Clotilde Djuikem

Learning Objectives

- Express changing quantities in terms of derivatives.
- Find relationships among derivatives in a given problem.
- Use the chain rule to find the rate of change of one quantity based on the rate of change of other quantities.

Application

In many real-world applications, related quantities are changing with respect to time. For example, if we consider the balloon example again, we can say that the rate of change in the volume, V , is related to the rate of change in the radius, r . In this case, we say that $\frac{dV}{dt}$ and $\frac{dr}{dt}$ are **related rates** because V is related to r .



Steps

Step 1: Volume of a Sphere

The volume of a sphere of radius r centimeters is:

$$V = \frac{4}{3}\pi r^3 \text{ cm}^3.$$

Since the balloon is being filled with air, both the volume and the radius are functions of time. Therefore, t seconds after beginning to fill the balloon with air, the volume of air in the balloon is:

$$V(t) = \frac{4}{3}\pi [r(t)]^3 \text{ cm}^3.$$

Step 2: Differentiate and Apply Chain Rule

Differentiating both sides of the equation with respect to time t , and applying the chain rule, we get:

$$\frac{dV}{dt} = 4\pi [r(t)]^2 \cdot \frac{dr}{dt}.$$

This equation shows that the rate of change of the volume $\frac{dV}{dt}$ is related to the rate of change of the radius $\frac{dr}{dt}$.

Step 3: Known Rate of Volume Change

The balloon is being filled with air at the constant rate of $2 \text{ cm}^3/\text{sec}$, so:

$$\frac{dV}{dt} = 2 \text{ cm}^3/\text{sec}.$$

Substituting into the equation, we have:

$$2 = 4\pi [r(t)]^2 \cdot \frac{dr}{dt} \quad \text{Then} \quad \frac{dr}{dt} = \frac{1}{2\pi [r(t)]^2} \text{ cm/sec.}$$

Step 4: Substitute $r = 3$ cm

When the radius $r = 3$ cm, substituting this into the equation gives:

$$\frac{dr}{dt} = \frac{1}{18\pi} \text{ cm/sec.}$$

Therefore, the radius of the balloon is increasing at a rate of $\frac{1}{18\pi}$ cm/sec.

Problem-Solving Strategy: Solving a Related-Rates

To solve a related-rates problem, follow these steps:

- ① **Assign symbols** to all variables involved in the problem. Draw a figure if applicable.
- ② **State the information** given in terms of the variables and identify the rate that needs to be determined.
- ③ **Find an equation** relating the variables from step 1.
- ④ **Differentiate** both sides of the equation from step 3 with respect to the independent variable, using the chain rule. This will give an equation relating the derivatives.
- ⑤ **Substitute known values** into the equation from step 4 and solve for the unknown rate of change.

Remember

Remember not to substitute values too soon, as this could turn a variable into a constant prematurely.

Problem: Airplane Flying Overhead

An airplane is flying at a constant height of 4000 ft. A man is viewing the plane from a position 3000 ft from the base of a radio tower. The airplane is flying horizontally away from the man at 600 ft/sec.

Question: At what rate is the distance between the man and the plane increasing when the plane passes over the radio tower?

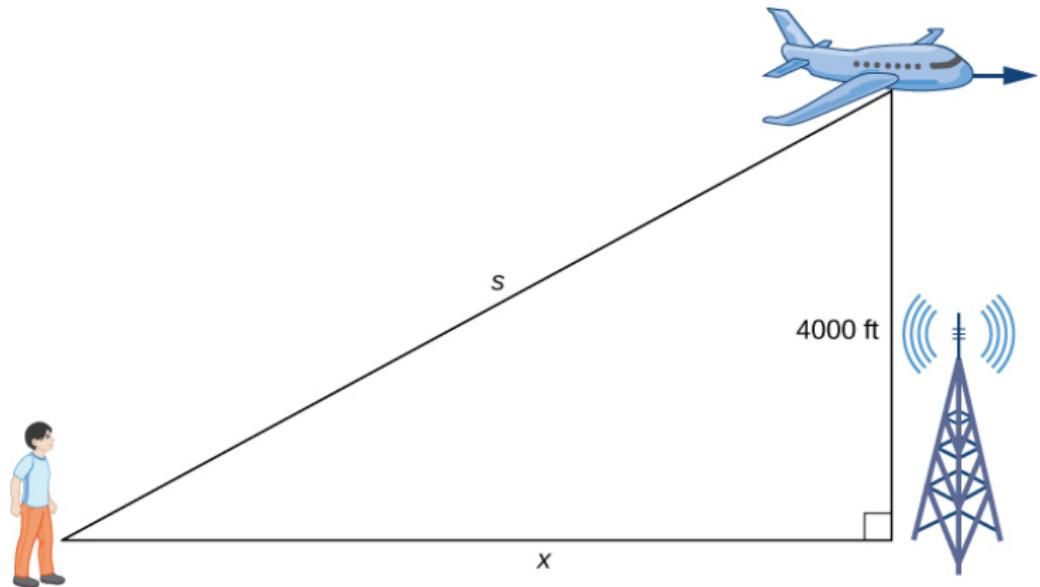
Step 1: Assign Variables

Let:

- $x(t)$ = the horizontal distance between the man and the point on the ground directly below the airplane (changing with time),
- $s(t)$ = the slant distance between the man and the airplane,
- Height of the plane is constant at 4000 ft.

We are tasked to find $\frac{ds}{dt}$ when $x(t) = 3000$ ft.

Graph



Step 2: Write Known Information

The horizontal distance is increasing at a constant rate:

$$\frac{dx}{dt} = 600 \text{ ft/sec.}$$

We need to find the rate of change of the distance between the man and the plane, i.e., $\frac{ds}{dt}$, when $x = 3000$ ft.

Step 3: Relating the Variables

From the geometry of the problem (right triangle), we can relate $x(t)$ and $s(t)$ using the Pythagorean theorem:

$$s(t)^2 = x(t)^2 + 4000^2.$$

Differentiating $2s(t)\frac{ds}{dt} = 2x(t)\frac{dx}{dt}$. Simplifying:

$$s(t)\frac{ds}{dt} = x(t)\frac{dx}{dt}.$$

Steps 4: Solve for $\frac{ds}{dt}$

Solving for $\frac{ds}{dt}$, we get:

$$\frac{ds}{dt} = \frac{x(t) \frac{dx}{dt}}{s(t)}.$$

When $x = 3000$ ft, we find s using the Pythagorean theorem:

$$s = \sqrt{3000^2 + 4000^2} = 5000 \text{ ft.}$$

Substituting the known values:

$$\frac{ds}{dt} = \frac{3000 \times 600}{5000} = 360 \text{ ft/sec.}$$

Answer: The distance between the man and the airplane is increasing at 360 ft/sec.

Airplane

An airplane is flying at a constant height of 4000 ft. A man is viewing the plane from a position 3000 ft from the base of a radio tower. The airplane is flying horizontally away from the man at 600 ft/sec.

Question: At what rate is the distance between the man and the plane increasing when the plane passes over the radio tower?

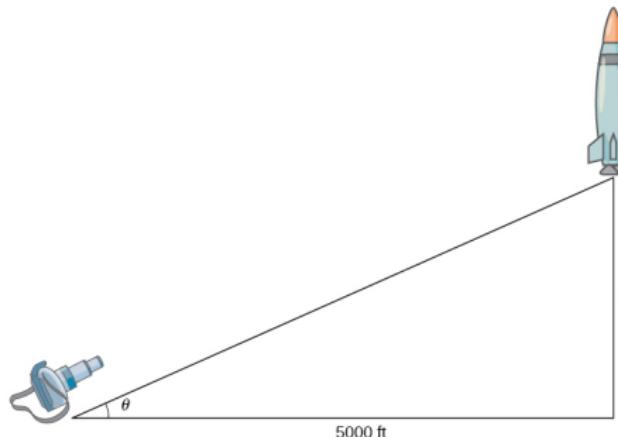
Step 1: Assign Variables

Let h denote the height of the rocket above the launch pad and θ be the angle between the camera lens and the ground.

Objective: We are trying to find $\frac{d\theta}{dt}$ when the rocket is 1000 ft above the ground.

Given: The rocket is moving at a rate of:

$$\frac{dh}{dt} = 600 \text{ ft/sec.}$$



Step 2: Relating Variables with Trigonometry

Relating Variables:

The right triangle formed by the rocket's height, the distance from the camera to the launch pad, and the hypotenuse helps relate h and θ .

From trigonometry, we know:

$$\tan \theta = \frac{h}{5000}.$$

This gives us the equation:

$$h = 5000 \tan \theta.$$

Step 3: Differentiate with Respect to Time

Differentiating both sides of the equation $h = 5000 \tan \theta$ with respect to time t :

$$\frac{dh}{dt} = 5000 \sec^2 \theta \cdot \frac{d\theta}{dt}.$$

We want to find $\frac{d\theta}{dt}$ when $h = 1000$ ft.

So, we need to calculate $\sec^2 \theta$ at that point.

Step 4: Determine $\sec^2 \theta$ and Hypotenuse

We know the adjacent side is 5000 ft, and the opposite side is $h = 1000$ ft.

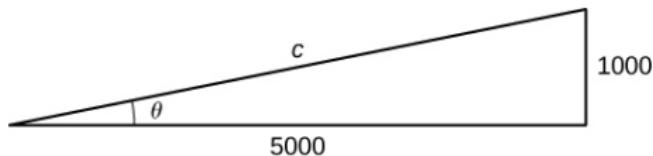
Using the Pythagorean theorem, the hypotenuse c is:

$$c = \sqrt{5000^2 + 1000^2} = 1000\sqrt{26} \text{ ft.}$$

Therefore:

$$\sec^2 \theta = \left(\frac{1000\sqrt{26}}{5000} \right)^2 = \frac{26}{25}.$$

Step 4: Triangle Diagram



The triangle shows $h = 1000$ ft, adjacent side 5000 ft, and hypotenuse $c = 1000\sqrt{26}$ ft.

Step 5: Solve for $\frac{d\theta}{dt}$

From Step 3, we have the equation:

$$\frac{dh}{dt} = 5000 \sec^2 \theta \cdot \frac{d\theta}{dt}.$$

Substituting the known values $\frac{dh}{dt} = 600 \text{ ft/sec}$ and $\sec^2 \theta = \frac{26}{25}$:

$$600 = 5000 \cdot \frac{26}{25} \cdot \frac{d\theta}{dt}.$$

Solving for $\frac{d\theta}{dt}$:

$$\frac{d\theta}{dt} = \frac{3}{26} \text{ rad/sec.}$$

Problem: Rate of Change for Camera Angle

Problem:

What rate of change is necessary for the elevation angle of the camera if the camera is placed on the ground at a distance of 4000 ft from the launch pad and the velocity of the rocket is 500 ft/sec when the rocket is 2000 ft off the ground?

Hint:

Find $\frac{d\theta}{dt}$ when $h = 2000$ ft. At that time, we know:

$$\frac{dh}{dt} = 500 \text{ ft/sec.}$$

Solution

Solution:

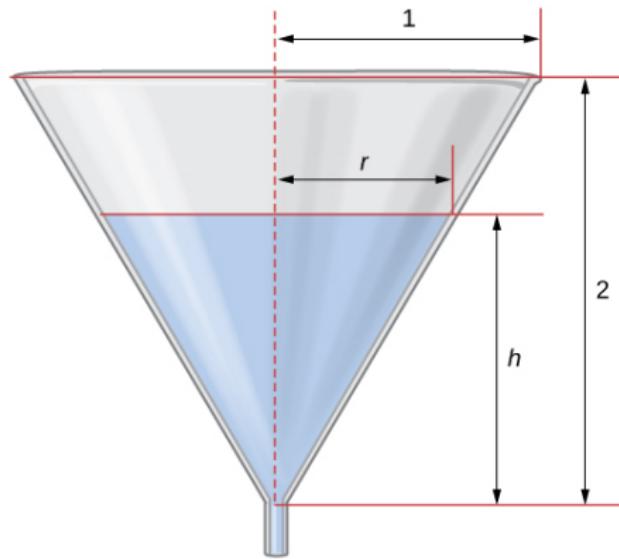
The rate of change of the camera's elevation angle is:

$$\frac{1}{10} \text{ rad/sec.}$$

Water Draining from a Funnel

Water is draining from the bottom of a cone-shaped funnel at the rate of $0.03 \text{ ft}^3/\text{sec}$. The height of the funnel is 2 ft and the radius at the top of the funnel is 1 ft.

At what rate is the height of the water in the funnel changing when the height of the water is $\frac{1}{2}$ ft?



Step 2: Determine $\frac{dh}{dt}$

Let h denote the height of the water in the funnel, r denote the radius of the water at its surface, and V denote the volume of the water.

We need to determine $\frac{dh}{dt}$ when $h = \frac{1}{2}$ ft. We know that:

$$\frac{dV}{dt} = -0.03 \text{ ft}^3/\text{sec.}$$

Step 3: Volume of Water in the Cone

The volume of water in the cone is given by:

$$V = \frac{1}{3}\pi r^2 h.$$

From the figure, we know that we have similar triangles. Therefore, the ratio of the sides in the two triangles is the same:

$$\frac{r}{h} = \frac{1}{2} \quad \text{or} \quad r = \frac{h}{2}.$$

Using this, the equation for volume becomes:

$$V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{\pi}{12}h^3.$$

Step 4: Apply Chain Rule

Applying the chain rule, we differentiate both sides of the equation with respect to time t :

$$\frac{dV}{dt} = \frac{\pi}{4} h^2 \frac{dh}{dt}.$$

Step 5: Solve for $\frac{dh}{dt}$

We want to find $\frac{dh}{dt}$ when $h = \frac{1}{2}$ ft. Since water is leaving at the rate of $0.03 \text{ ft}^3/\text{sec}$, we know:

$$\frac{dV}{dt} = -0.03 \text{ ft}^3/\text{sec.}$$

Therefore:

$$-0.03 = \frac{\pi}{4} \left(\frac{1}{2}\right)^2 \frac{dh}{dt},$$

which simplifies to:

$$-0.03 = \frac{\pi}{16} \frac{dh}{dt}.$$

Final Solution

Solving for $\frac{dh}{dt}$, we get:

$$\frac{dh}{dt} = \frac{-0.48}{\pi} \approx -0.153 \text{ ft/sec.}$$

Problem: Water Level Rate of Change

Problem:

At what rate is the height of the water changing when the height of the water is $\frac{1}{4}$ ft?

Hint:

We need to find $\frac{dh}{dt}$ when $h = \frac{1}{4}$.

Step 1: Volume Formula

The volume of water in the cone is:

$$V = \frac{1}{3}\pi r^2 h.$$

Since $\frac{r}{h} = \frac{1}{2}$, we have $r = \frac{h}{2}$. Substituting this into the volume equation:

$$V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{\pi}{12}h^3.$$

Step 2: Differentiate the Volume

Differentiating both sides of the volume equation with respect to time:

$$\frac{dV}{dt} = \frac{\pi}{4} h^2 \frac{dh}{dt}.$$

Step 3: Solve for $\frac{dh}{dt}$

We know that water is draining at a rate of $\frac{dV}{dt} = -0.03 \text{ ft}^3/\text{sec}$. Thus:

$$-0.03 = \frac{\pi}{4} \left(\frac{1}{4}\right)^2 \frac{dh}{dt}.$$

Simplifying the equation:

$$-0.03 = \frac{\pi}{4} \times \frac{1}{16} \frac{dh}{dt} = \frac{\pi}{64} \frac{dh}{dt}.$$

Therefore, solving for $\frac{dh}{dt}$:

$$\frac{dh}{dt} = \frac{-0.03 \times 64}{\pi} = \frac{-1.92}{\pi} \approx -0.611 \text{ ft/sec.}$$

Step 4

The height of the water is decreasing at a rate of approximately:

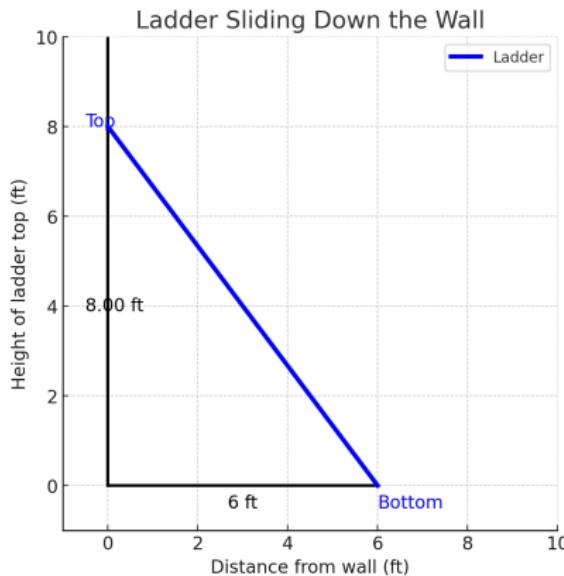
$$\frac{dh}{dt} \approx -0.611 \text{ ft/sec}$$

when the height of the water is $\frac{1}{4}$ ft.

Problem: Ladder Sliding Down a Wall

A ladder 10 feet long is leaning against a vertical wall. The bottom of the ladder is pulled away from the wall at a rate of 2 feet per second.

Question: How fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 feet away from the wall?



Problem: Ladder Sliding Down a Wall

- **Step 1: Assign Variables**

- **Step 2: Use the Pythagorean Theorem**

The relationship between x , y , and L is given by:

- **Step 3: Differentiate with Respect to Time** Differentiate both sides of the equation with respect to time t :

- **Step 4: Solve for $\frac{dy}{dt}$**

- **Step 5: Find y When $x = 6$**

Use the Pythagorean theorem to find y when $x = 6$ ft:

- **Step 6: Final Substitution**

Substitute $x = 6$, y , and $\frac{dx}{dt} = 2$ ft/sec into the equation to find $\frac{dy}{dt}$.

Key Concepts

To solve a related rates problem:

- ① First, **draw a picture** that illustrates the relationship between the two or more related quantities that are changing with respect to time.
- ② In terms of the quantities, **state the information** given and the rate to be found.
- ③ **Find an equation** relating the quantities.
- ④ **Use differentiation**, applying the chain rule as necessary, to find an equation that relates the rates.
- ⑤ Be sure **not to substitute** a variable quantity for one of the variables until after finding an equation relating the rates.

Maxima and Minima

Clotilde Djuikem

Learning Objectives

Learning Objectives

- Define absolute extrema.
- Define local extrema.
- Explain how to find the critical numbers of a function over a closed interval.
- Describe how to use critical numbers to locate absolute extrema over a closed interval.

Practical Significance of Extrema

Important Note

We are often interested in determining the largest and smallest values of a function. This information is important for:

- Creating accurate graphs.
- Solving optimization problems such as maximizing profit or minimizing material usage.

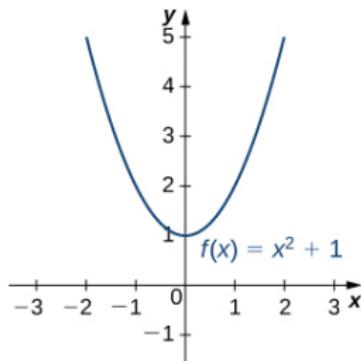
Absolute Extrema Example

Example

Consider the function $f(x) = x^2 + 1$ over the interval $(-\infty, \infty)$:

- As $x \rightarrow \pm\infty$, $f(x) \rightarrow \infty$.
- Therefore, the function does not have a largest value.
- However, $f(x) \geq 1$ for all x , and $f(0) = 1$.

Conclusion: The function has an **absolute minimum** of 1 at $x = 0$, but no absolute maximum.



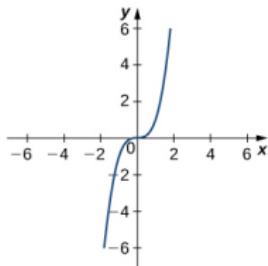
Definition of Absolute Extrema

Definition

Let f be a function defined over an interval I , and let $c \in I$.

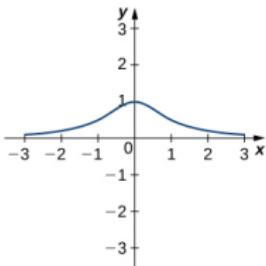
- f has an **absolute maximum** on I at c if $f(c) \geq f(x)$ for all $x \in I$.
- f has an **absolute minimum** on I at c if $f(c) \leq f(x)$ for all $x \in I$.
- If f has an absolute maximum or minimum, we say that f has an **absolute extremum** at c .

Graph for extrema



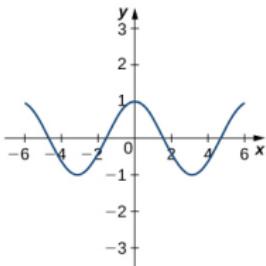
$f(x) = x^3$ on $(-\infty, \infty)$
No absolute maximum
No absolute minimum

(a)



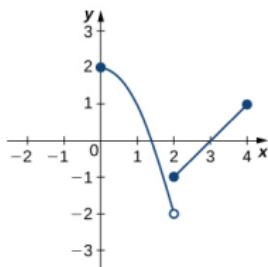
$f(x) = \frac{1}{x^2 + 1}$ on $(-\infty, \infty)$
Absolute maximum of 1 at $x = 0$
No absolute minimum

(b)



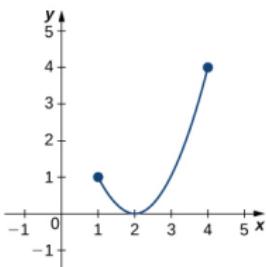
$f(x) = \cos(x)$ on $(-\infty, \infty)$
Absolute maximum of 1 at $x = 0$,
 $\pm 2\pi, \pm 4\pi\dots$
Absolute minimum of -1 at $x = \pm\pi$,
 $\pm 3\pi\dots$

(c)



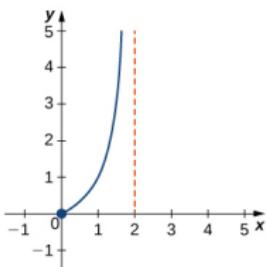
$f(x) = \begin{cases} 2 - x^2 & 0 \leq x < 2 \\ x - 3 & 2 \leq x \leq 4 \end{cases}$
Absolute maximum of 2 at $x = 0$
No absolute minimum

(d)



$f(x) = (x - 2)^2$ on $[1, 4]$
Absolute maximum of 4 at $x = 4$
Absolute minimum of 0 at $x = 2$

(e)



$f(x) = \frac{x}{2 - x}$ on $[0, 2)$
No absolute maximum
Absolute minimum of 0 at $x = 0$

(f)

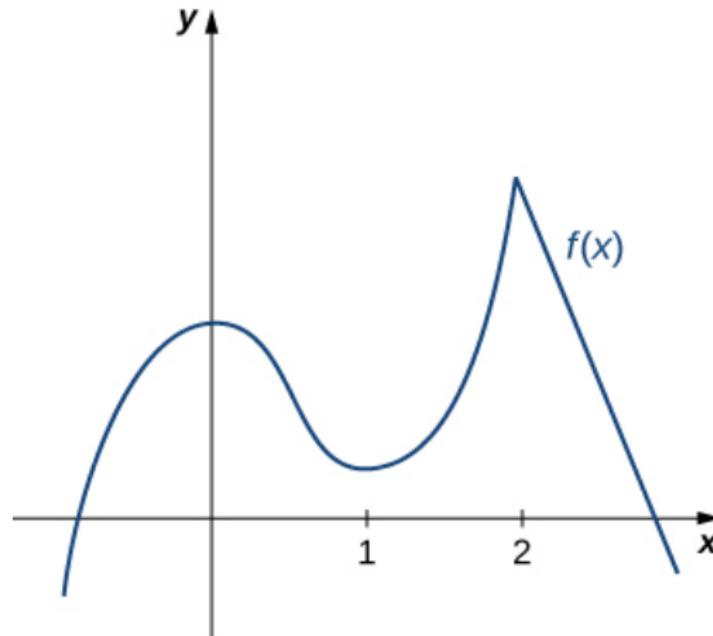
Extreme Value Theorem

Theorem

If f is a continuous function over the closed, bounded interval $[a, b]$, then:

- There is a point in $[a, b]$ at which f has an **absolute maximum**.
- There is a point in $[a, b]$ at which f has an **absolute minimum**.

Illustration local extrema



$f(x)$ defined on $(-\infty, \infty)$

Local maxima at $x = 0$ and $x = 2$

Local minimum at $x = 1$

Local Extrema

A function f has a local maximum at c if:

- There exists an open interval I containing c .
- I is contained in the domain of f .
- $f(c) \geq f(x)$ for all $x \in I$.

A function f has a local minimum at c if:

- There exists an open interval I containing c .
- I is contained in the domain of f .
- $f(c) \leq f(x)$ for all $x \in I$.

A function f has a local extremum at c if:

- f has a local maximum at c , or
- f has a local minimum at c .

Definition and Fermat's Theorem

Definition

Let c be an interior point in the domain of f . We say that c is a **critical number** of f if

$$f'(c) = 0 \quad \text{or} \quad f'(c) \text{ is undefined.}$$

Fermat's Theorem

If f has a local extremum at c and f is differentiable at c , then

$$f'(c) = 0.$$

Important

Note this theorem does not claim that a function f must have a local extremum at a critical number. Rather, it states that critical numbers are candidates for local extrema.

Proof Fermat's Theorem

Suppose f has a local extremum at c and f is differentiable at c . We need to show that $f'(c) = 0$. To do this, we will show that $f'(c) \geq 0$ and $f'(c) \leq 0$, and therefore $f'(c) = 0$. Since f has a local extremum at c , f has a local maximum or local minimum at c .

Suppose f has a local maximum at c . The case in which f has a local minimum at c can be handled similarly. There then exists an open interval I such that $f(c) \geq f(x)$ for all $x \in I$. Since f is differentiable at c , from the definition of the derivative, we know that

$$f'(c) = \lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c}.$$

Since this limit exists, both one-sided limits also exist and equal $f'(c)$. Therefore,

$$f'(c) = \lim_{x \rightarrow c^+} \frac{f(x) - f(c)}{x - c}, \text{ and } f'(c) = \lim_{x \rightarrow c^-} \frac{f(x) - f(c)}{x - c}.$$

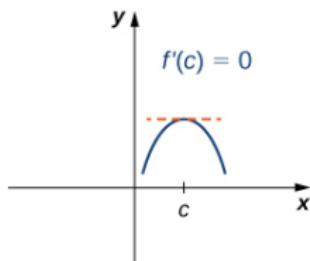
Since $f(c)$ is a local maximum, we see that $f(x) - f(c) \leq 0$ for x near c . Therefore, for x near c , but $x \neq c$, we have

$$\frac{f(x) - f(c)}{x - c} \leq 0.$$

From this, we conclude that $f'(c) \leq 0$. Similarly, it can be shown that $f'(c) \geq 0$. Therefore,

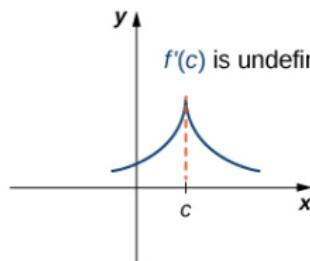
$$f'(c) = 0.$$

Defined and undefined $f'(c)$



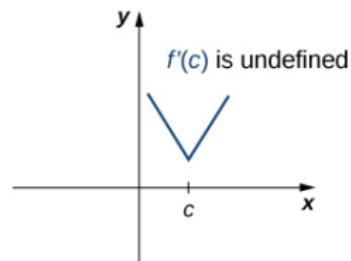
Local maximum at c

(a)



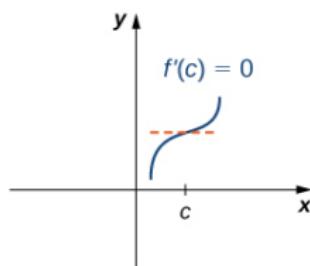
Local maximum at c

(b)



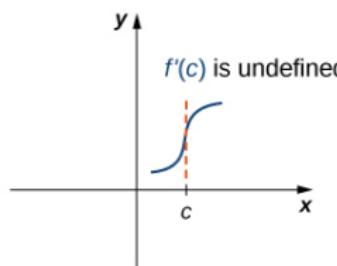
Local minimum at c

(c)



No local extremum at c

(d)



No local extremum at c

(e)

Steps to Find Local Minima and Maxima

Step 1: Find the derivative $f'(x)$

Step 2: Set the derivative equal to zero: Solve $f'(x) = 0$ **critical numbers**

Step 3: Determine where the derivative is undefined

Step 4: Use the First Derivative Test

For each critical point c :

- If $f'(x)$ changes from positive to negative at c , $f(c)$ is a **local maximum**.
- If $f'(x)$ changes from negative to positive at c , $f(c)$ is a **local minimum**.
- If $f'(x)$ does not change sign, $f(c)$ is neither.

Optional and applicable steps

Step 5: Use the Second Derivative Test (optional)

If the second derivative $f''(x)$ exists:

- If $f''(c) > 0$, $f(c)$ is a local minimum.
- If $f''(c) < 0$, $f(c)$ is a local maximum.
- If $f''(c) = 0$, the test is inconclusive.

Step 6: Check the endpoints (if applicable)

If the function is defined on a closed interval, check the function values at the endpoints. These may give the absolute maximum or minimum over the interval.

Locating Critical Numbers: Example a

For the function $f(x) = \frac{1}{3}x^3 - \frac{5}{2}x^2 + 4x$:

- **Step 1:** Find the derivative $f'(x)$.

$$f'(x) = \text{_____}$$

- **Step 2:** Set $f'(x) = 0$ and solve for x to find the critical numbers.

$$f'(x) = 0 \Rightarrow x = \text{_____}$$

- **Step 3:** Determine if there is a local extremum at each critical number using a graphing utility.

Locating Critical Numbers: Example b

For the function $f(x) = (x^2 - 1)^3$:

- **Step 1:** Find the derivative $f'(x)$.

$$f'(x) = \text{_____}$$

- **Step 2:** Set $f'(x) = 0$ and solve for x to find the critical numbers.

$$f'(x) = 0 \Rightarrow x = \text{_____}$$

- **Step 3:** Determine if there is a local extremum at each critical number using a graphing utility.

Locating Critical Numbers: Example c

For the function $f(x) = \frac{4x}{1+x^2}$:

- **Step 1:** Find the derivative $f'(x)$.

$$f'(x) = \text{_____}$$

- **Step 2:** Set $f'(x) = 0$ and solve for x to find the critical numbers.

$$f'(x) = 0 \Rightarrow x = \text{_____}$$

- **Step 3:** Determine if there is a local extremum at each critical number using a graphing utility.

Finding Critical Numbers

Find all critical numbers for the function:

$$f(x) = x^3 - \frac{1}{2}x^2 - 2x + 1$$

Step 1: Find the derivative $f'(x)$.

$$f'(x) = \text{_____}$$

Step 2: Set the derivative equal to zero and solve for x .

$$f'(x) = 0 \Rightarrow x = \text{_____}$$

Step 3: List the critical numbers:

Critical numbers: _____

Location of Absolute Extrema

Let $I = [a, b]$

If f is a continuous function on a closed interval I , then:

- The **absolute maximum**
- The **absolute minimum**

must happen either at the endpoints of I or at critical points inside I .

Problem-Solving Strategy: Finding Absolute Extrema

Consider a continuous function f defined over the closed interval $[a, b]$.

- ① **Step 1: Evaluate** the function f at the endpoints of the interval.

Calculate:

$$f(a) \text{ and } f(b)$$

- ② **Step 2: Find** all critical numbers of the function f within the open interval (a, b) . A critical number is where:

$$f'(x) = 0 \text{ or } f'(x) \text{ is undefined}$$

Then, evaluate the function at each critical number found.

- ③ **Step 3: Compare** all values obtained from Steps 1 and 2:

- The largest value is the **absolute maximum**.
- The smallest value is the **absolute minimum**.

Locating Absolute Extrema for Function a

Function a: $f(x) = -x^2 + 3x - 2$ over $[1, 3]$

① **Step 1:** Find the derivative $f'(x)$.

$$f'(x) = \text{_____}$$

② **Step 2:** Solve $f'(x) = 0$ to find the critical numbers.

$$f'(x) = 0 \Rightarrow x = \text{_____}$$

③ **Step 3:** Evaluate $f(x)$ at the critical points and endpoints $x = 1$ and $x = 3$.

$$f(1) = \text{_____} \quad f(3) = \text{_____}$$

④ **Step 4:** Compare the values and determine the absolute maximum and minimum.

$$\text{Max: } \text{_____} \quad \text{Min: } \text{_____}$$

Locating Absolute Extrema for Function b

Function b: $f(x) = x^2 - 3x^{2/3}$ over $[0, 2]$

① **Step 1:** Find the derivative $f'(x)$.

$$f'(x) = \text{_____}$$

② **Step 2:** Solve $f'(x) = 0$ to find the critical numbers.

$$f'(x) = 0 \Rightarrow x = \text{_____}$$

③ **Step 3:** Evaluate $f(x)$ at the critical points and endpoints $x = 0$ and $x = 2$.

$$f(0) = \text{_____} \quad f(2) = \text{_____}$$

④ **Step 4:** Compare the values and determine the absolute maximum and minimum.

$$\text{Max: } \text{_____} \quad \text{Min: } \text{_____}$$

Locating Absolute Extrema

Find the absolute maximum and absolute minimum of $f(x) = x^2 - 4x + 3$ over the interval $[1, 4]$.

① **Step 1:** Find the derivative $f'(x)$.

$$f'(x) = \text{_____}$$

② **Step 2:** Solve $f'(x) = 0$ to find the critical numbers.

$$f'(x) = 0 \Rightarrow x = \text{_____}$$

③ **Step 3:** Evaluate $f(x)$ at the critical points and the endpoints $x = 1$ and $x = 4$.

$$f(1) = \text{_____} \quad f(4) = \text{_____}$$

④ **Step 4:** Compare the values to determine the absolute maximum and minimum.

$$\text{Max: } \text{_____} \quad \text{Min: } \text{_____}$$

Formula for the Maximum or Minimum of a Quadratic

Problem: In precalculus, you learned a formula for the position of the maximum or minimum of a quadratic equation $y = ax^2 + bx + c$, which was:

$$m = -\frac{b}{2a}$$

Prove this formula using calculus.

- ① **Step 1:** Start with the given quadratic function:

$$y = ax^2 + bx + c$$

- ② **Step 2:** Find the derivative of y , $y'(x)$.

$$y'(x) = \text{_____}$$

- ③ **Step 3:** Set $y'(x) = 0$ and solve for x to find the critical point.

$$0 = \text{_____} \Rightarrow x = \text{_____}$$

- ④ **Step 4:** Conclude that the critical point $x = \frac{-b}{2a}$ gives the position of the maximum or minimum.

Key Concepts

- A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or have no absolute maximum or absolute minimum.
- If a function has a local extremum, the point at which it occurs must be a critical number. However, a function need not have a local extremum at a critical number.
- A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each extremum occurs at a critical number or an endpoint.

Mean Value Theorem

Clotilde Djuikem

Learning Objectives

- Explain the meaning of Rolle's theorem.
- Describe the significance of the Mean Value Theorem.
- State three important consequences of the Mean Value Theorem.

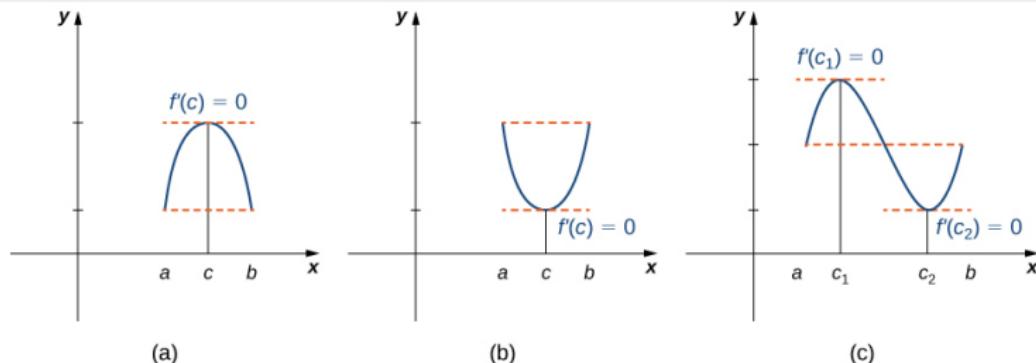
Rolle's Theorem

Definition

If the outputs of a differentiable function f are equal at the endpoints of an interval, there must be an interior point c where $f'(c) = 0$.

Visual Illustration

See the figure with parabolas and sine wave, illustrating different cases of Rolle's theorem.



Formal Statement of Rolle's Theorem

Statement

Let f be a

- Continuous function over the closed interval $[a, b]$ and
- Differentiable over the open interval (a, b) such that $f(a) = f(b)$.

Then, there exists at **least one** $c \in (a, b)$ such that $f'(c) = 0$.

Using Rolle's Theorem

Example

For the function $f(x) = x^2 + 2x$ over $[-2, 0]$, verify the criteria of Rolle's theorem and find the value c where $f'(c) = 0$.

Solution

Since $f(x)$ is continuous and differentiable on the interval, and $f(-2) = f(0) = 0$, there exists a point $c = -1$ where $f'(c) = 0$.

Example : Using Rolle's Theorem

Problem: Let $f(x) = x^2 - 4x + 4$ on the interval $[0, 4]$. Verify that f satisfies the conditions of Rolle's theorem and find the point c such that $f'(c) = 0$.

Solution:

1 Check continuity and differentiability:

$f(x) = x^2 - 4x + 4$ is a polynomial, so it is continuous and differentiable on $[0, 4]$.

2 Verify endpoint equality:

$f(0) = 4$ and $f(4) = 4$. Since $f(0) = f(4)$, the conditions of Rolle's theorem are satisfied.

3 Differentiate $f(x)$:

$$f'(x) = 2x - 4.$$

4 Set $f'(c) = 0$ and solve for c :

$$2c - 4 = 0 \Rightarrow c = 2.$$

5 Conclusion:

There exists a point $c = 2$ such that $f'(c) = 0$, which satisfies Rolle's theorem.

Example : Verifying Conditions for Rolle's Theorem

Problem: Let $f(x) = x^3 - 3x + 2$ over $[-2, 2]$. Determine if Rolle's theorem applies and find the value(s) of c if applicable.

Solution:

① Continuity and Differentiability:

$f(x) = x^3 - 3x + 2$ is a polynomial, so it is continuous and differentiable on $[-2, 2]$.

② Check endpoint equality:

$f(-2) = 0$ and $f(2) = 0$, so $f(-2) = f(2)$.

③ Differentiate $f(x)$: $f'(x) = 3x^2 - 3$.

④ Solve $f'(c) = 0$:

$$3c^2 - 3 = 0 \Rightarrow c^2 = 1 \Rightarrow c = \pm 1.$$

⑤ Conclusion:

The points $c = 1$ and $c = -1$ satisfy $f'(c) = 0$, as required by Rolle's theorem.

Exercise

Problem: Let $f(x) = x^2 - 5x + 6$ on $[1, 3]$. Use Rolle's theorem to verify the conditions and find the value(s) of c if possible.

Solution:

① **Continuity and Differentiability:**

② **Verify endpoint equality:**

③ **Differentiate $f(x)$:**

④ **Solve $f'(c) = 0$:**

⑤ **Conclusion:**

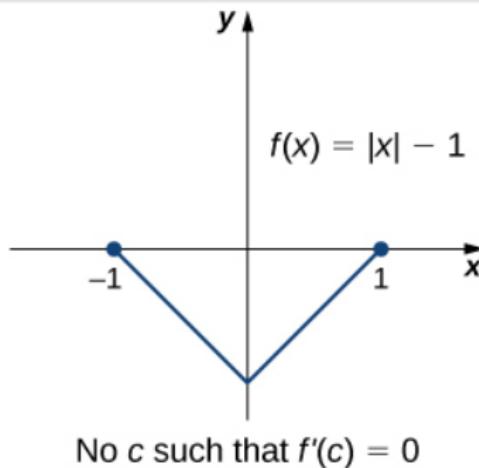
Rolle's Theorem: Importance of Differentiability

Example: Let $f(x) = |x| - 1$ on $[-1, 1]$.

- $f(x)$ is continuous on $[-1, 1]$ and $f(-1) = f(1) = 0$.
- However, f is not differentiable at $x = 0$.

Conclusion

Since f is not differentiable at $x = 0$, Rolle's theorem does not apply.
There is no $c \in (-1, 1)$ such that $f'(c) = 0$.



Using Rolle's Theorem

Problem: For each of the following functions, verify that the function satisfies the criteria of Rolle's theorem and find all values c in the given interval where $f'(c) = 0$.

a. $f(x) = x^2 + 2x$ over $[-2, 0]$

Solution Steps:

① **Check continuity and differentiability:**

② **Verify endpoint equality:**

$$f(-2) = \underline{\hspace{2cm}}, f(0) = \underline{\hspace{2cm}}$$

Since $f(-2) = f(0)$, the conditions are satisfied.

③ **Differentiate $f(x)$:**

$$f'(x) = \underline{\hspace{2cm}}$$

④ **Set $f'(c) = 0$ and solve for c :**

$$f'(c) = 0 \Rightarrow c = \underline{\hspace{2cm}}$$

Using Rolle's Theorem

b. $f(x) = x^3 - 4x$ over $[-2, 2]$

Solution Steps:

① **Check continuity and differentiability:**

② **Verify endpoint equality:**

$$f(-2) = \underline{\hspace{2cm}}, f(2) = \underline{\hspace{2cm}}$$

Since $f(-2) = f(2)$, the conditions are satisfied.

③ **Differentiate $f(x)$:**

$$f'(x) = \underline{\hspace{2cm}}$$

④ **Set $f'(c) = 0$ and solve for c :**

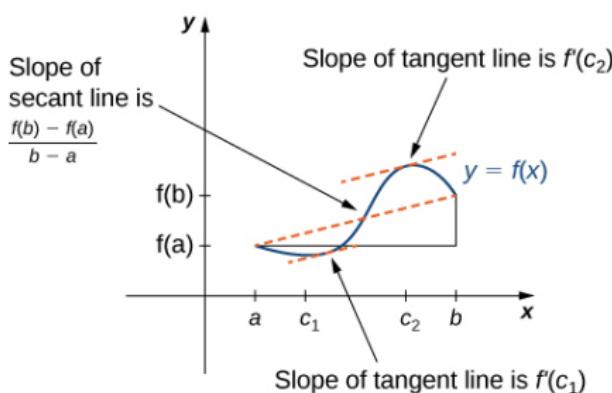
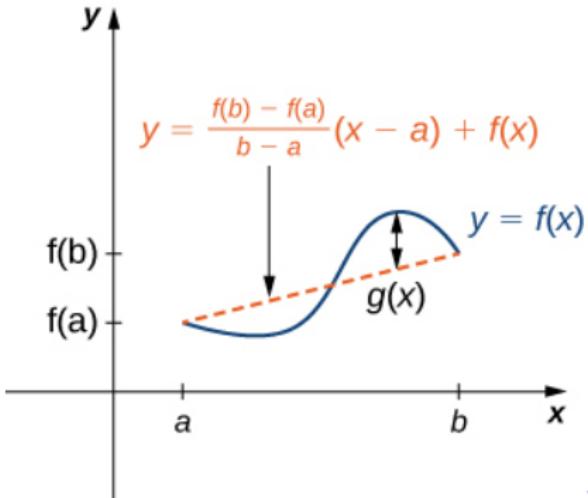
$$f'(c) = 0 \Rightarrow c = \underline{\hspace{2cm}}$$

The Mean Value Theorem (MVT)

Statement

Let f be continuous over the closed interval $[a, b]$ and differentiable over the open interval (a, b) . Then there exists a point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$



Applying the Mean Value Theorem

Example

For the function $f(x) = \sqrt{x}$ over $[0, 9]$, find the point c such that $f'(c)$ equals the slope of the secant line between $(0, f(0))$ and $(9, f(9))$.

Solution

The slope of the secant line is $\frac{3}{9} = \frac{1}{3}$. We find $c = \frac{9}{4}$ such that $f'(c) = \frac{1}{3}$.

Example 2: Applying the Mean Value Theorem

Problem: Let $f(x) = \sqrt{x}$ on the interval $[1, 4]$. Use the Mean Value Theorem to find the value c such that $f'(c)$ equals the slope of the secant line between $(1, f(1))$ and $(4, f(4))$. **Solution:**

- ① **Verify continuity and differentiability:**

$f(x) = \sqrt{x}$ is continuous on $[1, 4]$ and differentiable on $(1, 4)$.

- ② **Calculate the secant slope:**

$$\text{slope} = \frac{f(4) - f(1)}{4 - 1} = \frac{2 - 1}{3} = \frac{1}{3}.$$

- ③ **Differentiate $f(x)$:** $f'(x) = \frac{1}{2\sqrt{x}}$.

- ④ **Set $f'(c) = \frac{1}{3}$ and solve for c :**

$$\frac{1}{2\sqrt{c}} = \frac{1}{3} \Rightarrow \sqrt{c} = \frac{3}{2} \Rightarrow c = \frac{9}{4}.$$

- ⑤ **Conclusion:** At $c = \frac{9}{4}$, the tangent slope equals the secant slope, satisfying the Mean Value Theorem.

Exercise

Problem: Let $f(x) = x^2 + x - 12$ on $[2, 6]$. Use the Mean Value Theorem to find c such that $f'(c)$ equals the secant slope.

Solution:

1 Continuity and Differentiability:

2 Calculate the secant slope:

3 Differentiate $f(x)$:

4 Set $f'(c)$ equal to the secant slope and solve for c :

5 Conclusion:

Mean Value Theorem and Inequalities

Problem

Use the Mean Value Theorem to show that if $x > 0$, then $\sin x \leq x$.

Mean Value Theorem and Inequalities

Problem

Use the Mean Value Theorem to show that if $x > 0$, then $\sin x \leq x$.

Solution Step 1: Define the function and interval.

$f(x) = \sin x - x$. To show that $f(x) \leq 0$, we consider the interval $[0, x]$.

Step 2: Check continuity and differentiability. The function f is the difference of a trigonometric function and a polynomial. Thus, f is continuous on $[0, x]$ and differentiable on $(0, x)$.

Step 3: Calculate the derivative of $f(x)$. We find that $f'(x) = \cos x - 1$.

Step 4: Apply the Mean Value Theorem. By the Mean Value Theorem, there exists a point $c \in (0, x)$ such that

$$f'(c) = \frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x}.$$

Step 5: Analyze $f'(c)$ to conclude.

Since $f'(c) = \cos c - 1 \leq 0$ (because $\cos c \leq 1$ for all c), and $x > 0$, we conclude that $f(x) \leq 0$. Therefore, $\sin x \leq x$.

Problem: Ball Dropped from a Height

Problem: A ball is dropped from a height of 200 ft. Its position at time t is $s(t) = -16t^2 + 200$. Find the time t when the instantaneous velocity equals the average velocity.

Hint

1. Find the time it takes for the ball to hit the ground.
2. Calculate the average velocity.

Problem: Ball Dropped from a Height

Problem: A ball is dropped from a height of 200 ft. Its position at time t is $s(t) = -16t^2 + 200$. Find the time t when the instantaneous velocity equals the average velocity.

Hint

1. Find the time it takes for the ball to hit the ground.
2. Calculate the average velocity.

Solution Step 1: Time to hit the ground

$$s(t) = 0 \Rightarrow -16t^2 + 200 = 0 \Rightarrow t = \frac{5\sqrt{2}}{2}.$$

Step 2: Average velocity $v_{\text{avg}} = \frac{s(t) - s(0)}{t} = -40\sqrt{2}$ ft/sec.

Step 3: Instantaneous velocity

$s'(t) = -32t$. Set $s'(t) = -40\sqrt{2}$:

$$-32t = -40\sqrt{2} \Rightarrow t = \frac{5\sqrt{2}}{2} \text{ seconds.}$$

Corollaries of the Mean Value Theorem

Corollary 1: Functions with a Derivative of Zero

Let f be differentiable over an interval I . If $f'(x) = 0$ for all $x \in I$, then $f(x)$ is constant for all $x \in I$.

Corollary 2: Constant Difference Theorem

If f and g are differentiable over an interval I and $f'(x) = g'(x)$ for all $x \in I$, then

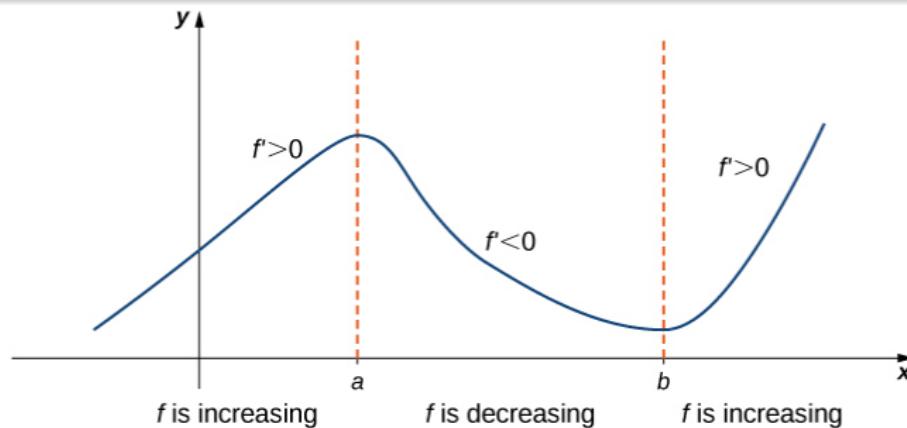
$$f(x) = g(x) + C$$

for some constant C .

Corollaries of the Mean Value Theorem

Key Corollaries

- If $f'(x) = 0$ over an interval I , then f is constant over I .
- If $f'(x) > 0$ over I , then f is increasing over I .
- If $f'(x) < 0$ over I , then f is decreasing over I .



Key Concepts

Rolle's Theorem

If f is continuous over $[a, b]$ and differentiable over (a, b) , and $f(a) = f(b) = 0$, then there exists a point $c \in (a, b)$ such that $f'(c) = 0$.

Mean Value Theorem (MVT)

If f is continuous over $[a, b]$ and differentiable over (a, b) , then there exists a point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Constant Function Property

If $f'(x) = 0$ over an interval I , then f is constant over I .

Equality of Derivatives Implies Constant Difference

If two differentiable functions f and g satisfy $f'(x) = g'(x)$ over an interval I , then $f(x) = g(x) + C$ for some constant C .

Key Concepts

Monotonicity

If $f'(x) > 0$ over an interval I , then f is increasing over I . If $f'(x) < 0$ over I , then f is decreasing over I .

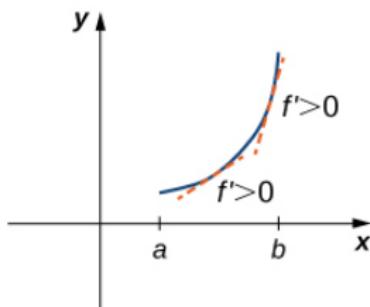
Derivatives and the Shape of a Graph

Clotilde Djuikem

Learning Objectives

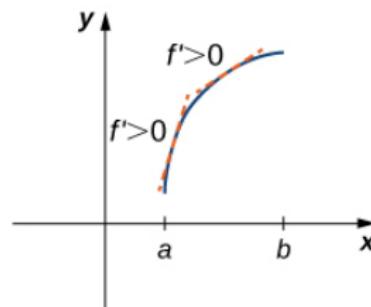
- Explain how the sign of the first derivative affects the shape of a function's graph.
- State the first derivative test for identifying critical numbers.
- Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function's graph.
- Explain the concavity test for a function over an open interval.
- Describe the relationship between a function and its first and second derivatives.
- State the second derivative test for identifying local extrema.

Graph of function and sign of derivative



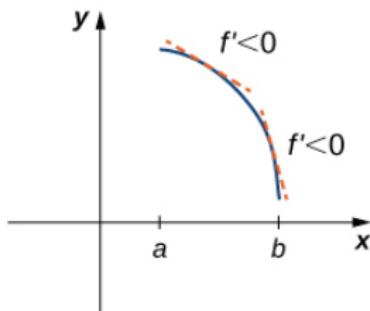
f is increasing

(a)



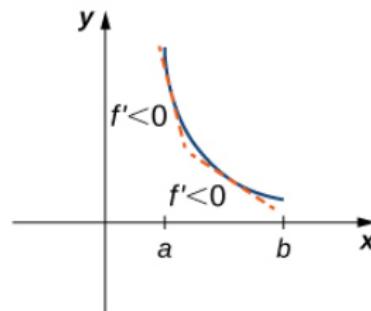
f is increasing

(b)



f is decreasing

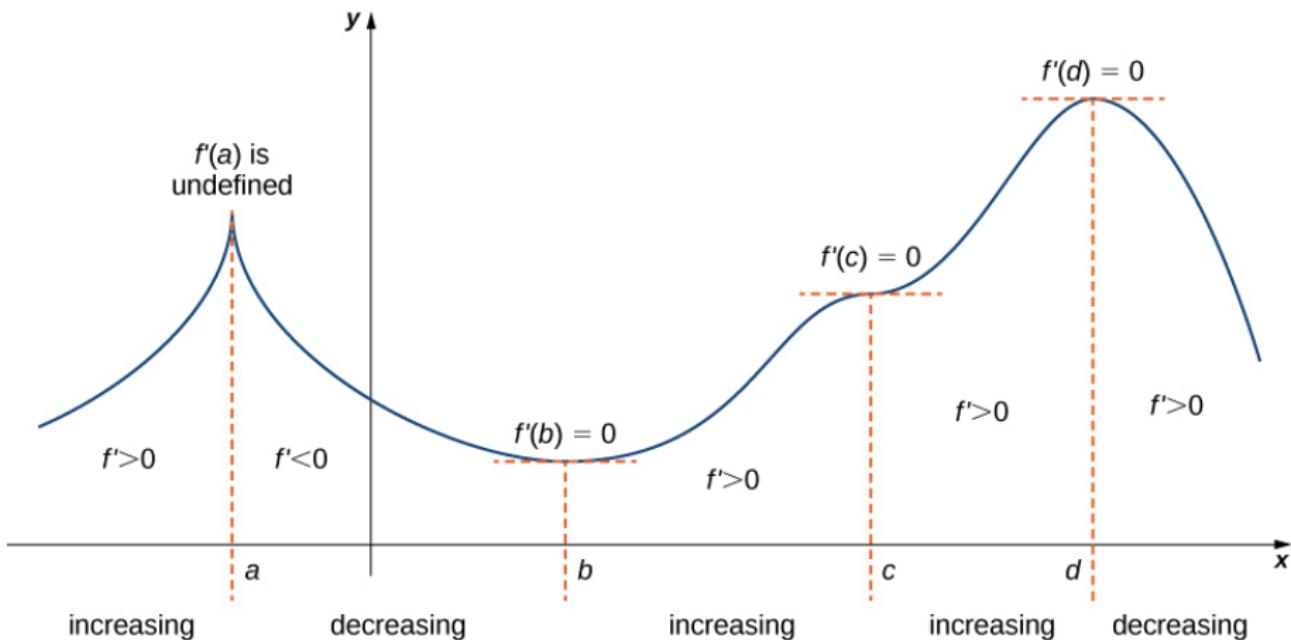
(c)



f is decreasing

(d)

Graph



First Derivative Test

First Derivative Test

Suppose that f is a continuous function over an interval I containing a critical number c . If f is differentiable over I , except possibly at c , then $f(c)$ satisfies one of the following conditions:

- ① If f' changes sign from positive to negative at c , then $f(c)$ is a local maximum.
- ② If f' changes sign from negative to positive at c , then $f(c)$ is a local minimum.
- ③ If f' has the same sign on both sides of c , then $f(c)$ is not a local extremum.

Problem-Solving Strategy: First Derivative Test

For a continuous function f over interval I :

- ① **Identify Critical Numbers:** Find points where $f'(x) = 0$ or $f'(x)$ is undefined.
- ② **Determine f' Sign in Each Subinterval:**
 - Select a test point in each subinterval.
 - Check if $f'(x)$ is positive (increasing) or negative (decreasing).
- ③ **Conclude Local Behavior at Each Critical Number:**
 - f' changes $+$ \rightarrow $-$: local max.
 - f' changes $-$ \rightarrow $+$: local min.
 - f' does not change: no extremum.

Finding Local Extrema Using the First Derivative Test

Problem: Use the first derivative test to find the location of all local extrema for $f(x) = x^3 - 3x^2 - 9x - 1$. Confirm your results using a graphing utility. **Solution Steps:**

① **Find the derivative:** $f'(x) = 3x^2 - 6x - 9$.

② **Set $f'(x) = 0$ and solve for x :**

$$3x^2 - 6x - 9 = 0 \Rightarrow x^2 - 2x - 3 = 0 \Rightarrow (x - 3)(x + 1) = 0$$

Critical points: $x = 3$ and $x = -1$.

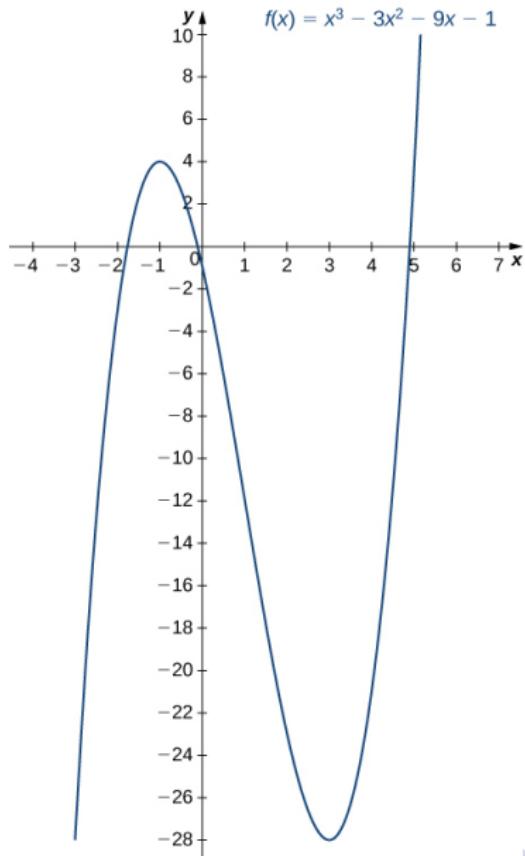
③ **Test the sign of f' around each critical point:**

x Interval	$(-\infty, -1)$	$(-1, 3)$	$(3, \infty)$
Test Point x	-2	0	4
$f'(x)$	+ (positive)	- (negative)	+ (positive)
$f(x)$ Behavior	Increasing	Decreasing	Increasing

④ **Determine local extrema:**

- f' changes from positive to negative at $x = -1$: local maximum.
- f' changes from negative to positive at $x = 3$: local minimum.

Confirm results with a graphing utility.



Finding Local Extrema Using the First Derivative Test

Problem: Use the first derivative test to locate all local extrema for $f(x) = -x^3 + \frac{3}{2}x^2 + 18x$.

Solution Steps:

① **Find the derivative:** $f'(x) = -3x^2 + 3x + 18$

② **Set $f'(x) = 0$ and solve for x :**

$$-3x^2 + 3x + 18 = 0 \Rightarrow x^2 - x - 6 = 0 \Rightarrow (x - 3)(x + 2) = 0$$

Critical points: $x = 3$ and $x = -2$.

③ **Test the sign of f' around each critical point:**

x Interval	$(-\infty, -2)$	$(-2, 3)$	$(3, \infty)$
Test Point x	-3	0	4
$f'(x)$	+ (positive)	- (negative)	+ (positive)
$f(x)$ Behavior	Increasing	Decreasing	Increasing

④ **Determine local extrema:**

- f' changes from positive to negative at $x = -2$: local maximum.
- f' changes from negative to positive at $x = 3$: local minimum.

Using the First Derivative Test

Problem: Use the first derivative test to find the location of all local extrema for $f(x) = 5x^{1/3} - x^{5/3}$. Confirm your results using a graphing utility. **Solution Steps:**

① **Find the derivative:**

$$f'(x) = \frac{5}{3}x^{-2/3} - \frac{5}{3}x^{2/3} = \frac{5}{3} \left(x^{-2/3} - x^{2/3} \right) = \frac{5}{3} \cdot \frac{1-x}{x^{2/3}}$$

② **Set $f'(x) = 0$ and solve for x :** $\frac{5}{3} \cdot \frac{1-x}{x^{2/3}} = 0 \Rightarrow 1-x = 0$ Critical point: $x = 1$. Note that $f'(x)$ is undefined at $x = 0$, so $x = 0$ is also a critical point.

③ **Test the sign of f' around each critical point:**

x Interval	$(-\infty, 0)$	$(0, 1)$	$(1, \infty)$
Test Point x	-1	0.5	2
$f'(x)$	- (negative)	+ (positive)	- (negative)
$f(x)$ Behavior	Decreasing	Increasing	Decreasing

④ **Determine local extrema:**

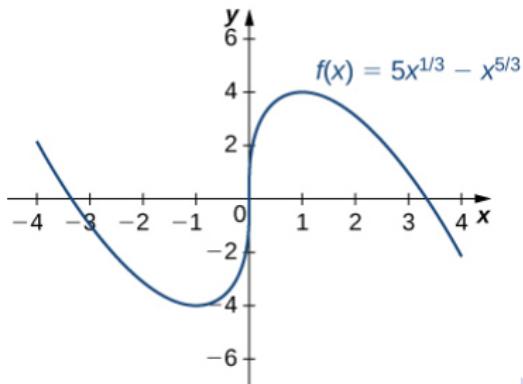
- f' changes from negative to positive at $x = 0$: local minimum.
- f' changes from positive to negative at $x = 1$: local maximum.

Confirm results with a graphing utility

Graph

Confirm results with a graphing utility: Plot $f(x)$ to verify the local minimum at $x = 0$ and local maximum at $x = 1$.

Since f is decreasing over the interval $(-\infty, -1)$ and increasing over $(-1, 0)$, f has a local minimum at $x = -1$. Since f is increasing over both $(-1, 0)$ and $(0, 1)$, f does not have a local extremum at $x = 0$. Since f is increasing over $(0, 1)$ and decreasing over $(1, \infty)$, f has a local maximum at $x = 1$. These analytical results are confirmed by the following graph.



Using the First Derivative Test

Problem: Use the first derivative test to find all local extrema for $f(x) = \sqrt[3]{x} - 1$.

Hint: The only critical number of f is $x = 1$.

Using the First Derivative Test

Problem: Use the first derivative test to find all local extrema for $f(x) = \sqrt[3]{x} - 1$.

Hint: The only critical number of f is $x = 1$. **Solution Steps:**

① **Find the derivative:**

$$f'(x) = \frac{1}{3}x^{-2/3} = \frac{1}{3\sqrt[3]{x^2}}$$

② **Identify critical points:** $f'(x)$ is undefined at $x = 0$ and equal to zero at $x = 1$. Thus, the critical number is $x = 1$.

③ **Test the sign of f' around $x = 1$:**

- For $x = 0.5$ (left of $x = 1$): $f'(0.5) = \frac{1}{3\sqrt[3]{0.5^2}} > 0$ (positive).
- For $x = 2$ (right of $x = 1$): $f'(2) = \frac{1}{3\sqrt[3]{2^2}} > 0$ (positive).

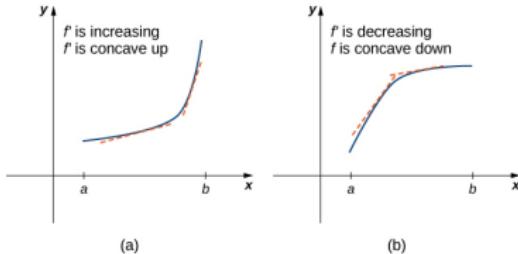
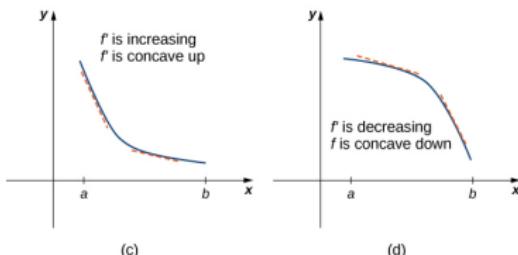
④ **Conclusion:** Since $f'(x)$ is positive on both sides of $x = 1$, there is no local extremum at $x = 1$.

Definition

Concavity of a Function

Let f be a function that is differentiable over an open interval I .

- If f' is increasing over I , we say f is **concave up** over I .
- If f' is decreasing over I , we say f is **concave down** over I .



Test for Concavity with Examples

Concavity Test

Let f be a function that is twice differentiable over an interval I .

- ① If $f''(x) > 0$ for all $x \in I$, then f is **concave up** over I .
- ② If $f''(x) < 0$ for all $x \in I$, then f is **concave down** over I .

Examples:

- **Example 1:** $f(x) = x^2$
 - $f'(x) = 2x, f''(x) = 2$
 - Since $f''(x) = 2 > 0$ for all x , $f(x) = x^2$ is **concave up** everywhere.
- **Example 2:** $f(x) = -x^2$
 - $f'(x) = -2x, f''(x) = -2$
 - Since $f''(x) = -2 < 0$ for all x , $f(x) = -x^2$ is **concave down** everywhere.

Definition of an Inflection Point

Inflection Point

If f is continuous at a and f changes concavity at a , then the point $(a, f(a))$ is an **inflection point** of f .

Example 1: Determine the inflection points of $f(x) = x^3 - 3x^2 + 4$.

- Find $f''(x)$ and set it equal to zero to find potential inflection points.
- Verify if f changes concavity at these points.

Solution:

- $f'(x) = 3x^2 - 6x$
- $f''(x) = 6x - 6$
- Set $f''(x) = 0 \Rightarrow x = 1$
- Check concavity around $x = 1$:
 - $f''(x) > 0$ for $x > 1$ (concave up)
 - $f''(x) < 0$ for $x < 1$ (concave down)
- Conclusion: $(1, f(1)) = (1, 2)$ is an inflection point.

Second Derivative Test

Second Derivative Test

Suppose $f'(c) = 0$ and $f''(x)$ is continuous over an interval containing c .

- ① If $f''(c) > 0$, then f has a **local minimum** at c .
- ② If $f''(c) < 0$, then f has a **local maximum** at c .
- ③ If $f''(c) = 0$, then the test is **inconclusive**.

Using the Second Derivative Test

Problem: Use the second derivative to find the location of all local extrema for $f(x) = x^5 - 5x^3$.

Using the Second Derivative Test

Problem: Use the second derivative to find the location of all local extrema for $f(x) = x^5 - 5x^3$. **Solution Steps:**

1 Find the first derivative:

$$f'(x) = 5x^4 - 15x^2 = 5x^2(x^2 - 3)$$

Set $f'(x) = 0$: $5x^2(x^2 - 3) = 0 \Rightarrow x = 0$ and $x = \pm\sqrt{3}$ Critical points: $x = 0$, $x = \sqrt{3}$, and $x = -\sqrt{3}$.

2 Find the second derivative:

$$f''(x) = 20x^3 - 30x = 10x(2x^2 - 3)$$

3 Evaluate $f''(x)$ at each critical point:

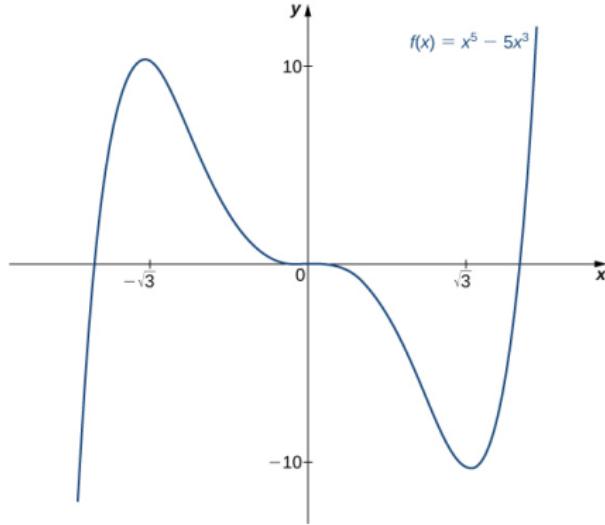
- $f''(0) = 10 \cdot 0 \cdot (2 \cdot 0^2 - 3) = 0$ (inconclusive).
- $f''(\sqrt{3}) = 10\sqrt{3}(2 \cdot 3 - 3) = 30\sqrt{3} > 0$ (local minimum).
- $f''(-\sqrt{3}) = 10(-\sqrt{3})(2 \cdot 3 - 3) = -30\sqrt{3} < 0$ (local maximum).

4 Conclusion:

- $f(x)$ has a local minimum at $x = \sqrt{3}$.
- $f(x)$ has a local maximum at $x = -\sqrt{3}$.
- The second derivative test is inconclusive at $x = 0$.

The second derivative is inconclusive

- **Conclusion:** Since f' is negative on both intervals around $x = 0$, f is decreasing across $x = 0$. Therefore, f does not have a local extremum at $x = 0$.
- The graph confirms these results.



Example 1: Polynomial Function

Problem: Use the second derivative test to find the location of all local extrema for $f(x) = x^4 - 4x^2$.

Example 1: Polynomial Function

Problem: Use the second derivative test to find the location of all local extrema for $f(x) = x^4 - 4x^2$.

Solution Steps:

① Find the First Derivative:

$$f'(x) = 4x(x^2 - 2) \Rightarrow x = 0, \pm\sqrt{2}$$

Critical points: $x = 0$ and $x = \pm\sqrt{2}$.

② Find the Second Derivative:

$$f''(x) = 12x^2 - 8$$

③ Evaluate $f''(x)$ at Each Critical Point:

- $f''(0) = -8$: local maximum at $x = 0$.
- $f''(\pm\sqrt{2}) = 16$: local minima at $x = \pm\sqrt{2}$.

④ Conclusion:

- Local maximum at $x = 0$.
- Local minima at $x = \pm\sqrt{2}$.

Example 2: Exponential Function

Problem: Use the second derivative test to find the location of all local extrema for $f(x) = e^{-x^2}$.

Example 2: Exponential Function

Problem: Use the second derivative test to find the location of all local extrema for $f(x) = e^{-x^2}$.

Solution Steps:

① Find the First Derivative:

$$f'(x) = -2xe^{-x^2}$$

Set $f'(x) = 0$: Critical point is $x = 0$.

② Find the Second Derivative:

$$f''(x) = (4x^2 - 2)e^{-x^2}$$

③ Evaluate $f''(x)$ at the Critical Point $x = 0$:

$$f''(0) = -2 \Rightarrow \text{local maximum at } x = 0$$

④ Conclusion:

- Local maximum at $x = 0$.

Example 3: Trigonometric Function

Problem: Use the second derivative test to find the location of all local extrema for $f(x) = \sin(x) + \cos(x)$ over the interval $[0, 2\pi]$.

Example 3: Trigonometric Function

Problem: Use the second derivative test to find the location of all local extrema for $f(x) = \sin(x) + \cos(x)$ over the interval $[0, 2\pi]$.

Solution Steps:

① Find the First Derivative:

$$f'(x) = \cos(x) - \sin(x)$$

Set $f'(x) = 0$: Solving $\cos(x) = \sin(x)$ gives critical points $x = \frac{\pi}{4}$ and $x = \frac{5\pi}{4}$.

② Find the Second Derivative:

$$f''(x) = -\sin(x) - \cos(x)$$

③ Evaluate $f''(x)$ at Each Critical Point:

- $f''\left(\frac{\pi}{4}\right) = -\sqrt{2}$: local maximum at $x = \frac{\pi}{4}$.
- $f''\left(\frac{5\pi}{4}\right) = \sqrt{2}$: local minimum at $x = \frac{5\pi}{4}$.

④ Conclusion:

- Local maximum at $x = \frac{\pi}{4}$.
- Local minimum at $x = \frac{5\pi}{4}$.

Key Concepts

Critical Points and Sign of f'

- If c is a critical number of f and $f'(x) > 0$ for $x < c$ and $f'(x) < 0$ for $x > c$, then f has a local maximum at c .
- If c is a critical number of f and $f'(x) < 0$ for $x < c$ and $f'(x) > 0$ for $x > c$, then f has a local minimum at c .

Concavity

- If $f''(x) > 0$ over an interval I , then f is concave up over I .
- If $f''(x) < 0$ over an interval I , then f is concave down over I .

Second Derivative Test

- If $f'(c) = 0$ and $f''(c) > 0$, then f has a local minimum at c .
- If $f'(c) = 0$ and $f''(c) < 0$, then f has a local maximum at c .
- If $f'(c) = 0$ and $f''(c) = 0$, use the First Derivative Test or evaluate $f'(x)$ at points around c to determine if f has a local extremum at c .

Applied Optimization Problems

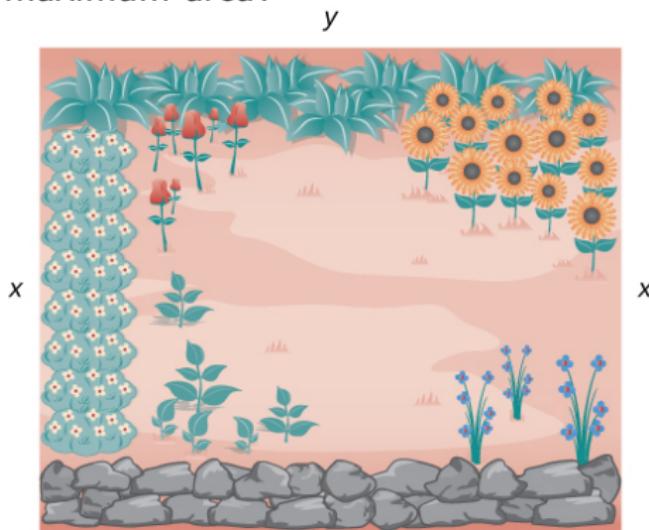
Clotilde Djuikem

Learning Objective

- Set up and solve optimization problems in several applied fields.

Maximizing the Area of a Garden

A rectangular garden is to be constructed using a rock wall as one side of the garden and wire fencing for the other three sides. Given 100 ft of wire fencing, determine the dimensions that would create a garden of maximum area. What is the maximum area?



Problem Setup

Objective: Maximize the area of a rectangular garden.

Let:

- x : Length of the side perpendicular to the rock wall.
- y : Length of the side parallel to the rock wall.

Given:

- Total fencing available: 100 ft.
- Area of the garden: $A = x \cdot y$.
- Constraint: $2x + y = 100$.

Step 1: Express Area in Terms of One Variable

From the constraint equation:

$$2x + y = 100 \implies y = 100 - 2x.$$

Substitute $y = 100 - 2x$ into $A = x \cdot y$:

$$A(x) = x \cdot (100 - 2x) = 100x - 2x^2.$$

Thus, the area is given by:

$$A(x) = 100x - 2x^2.$$

Step 2: Determine the Domain

To construct a rectangular garden:

- Both x and y must be positive:

$$x > 0 \quad \text{and} \quad y = 100 - 2x > 0.$$

- This implies $x < 50$.

Therefore, the domain for x is:

$$0 < x < 50.$$

To use the Extreme Value Theorem, we extend this to the closed interval:

$$[0, 50].$$

Step 3: Find the Critical Number

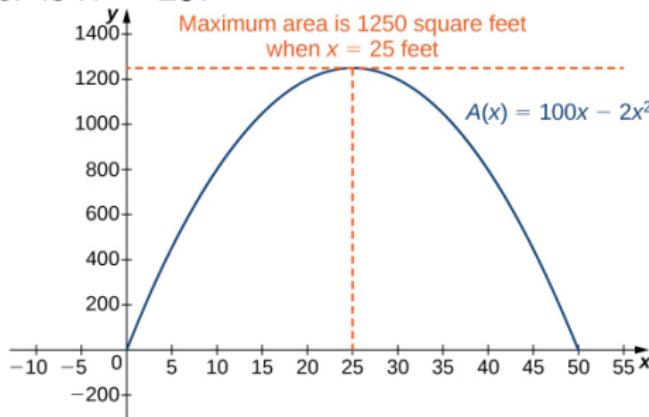
Differentiate $A(x) = 100x - 2x^2$:

$$A'(x) = 100 - 4x.$$

Set $A'(x) = 0$ to find the critical number:

$$100 - 4x = 0 \implies x = 25.$$

The critical number is $x = 25$.



Step 4: Evaluate the Area

Evaluate $A(x)$ at the endpoints and critical number:

- At $x = 0$: $A(0) = 100(0) - 2(0)^2 = 0$.
- At $x = 50$: $A(50) = 100(50) - 2(50)^2 = 0$.
- At $x = 25$:

$$A(25) = 100(25) - 2(25)^2 = 2500 - 1250 = 1250 \text{ ft}^2.$$

Maximum Area: 1250 ft^2 occurs at $x = 25$.

Solution Summary

Optimal Dimensions:

- $x = 25$ ft (perpendicular to the rock wall).
- $y = 100 - 2(25) = 50$ ft (parallel to the rock wall).

Maximum Area:

$$A = x \cdot y = 25 \cdot 50 = 1250 \text{ ft}^2.$$

Conclusion: To maximize the area, construct a garden with dimensions 25 ft \times 50 ft.

Problem-Solving Strategy: Optimization Problems

Step-by-Step Approach:

- ① **Introduce all variables:** Define variables and, if applicable, draw and label a diagram.
- ② **Identify the target quantity:** Determine what needs to be maximized or minimized and specify the range of possible values for other variables.
- ③ **Write the formula:** Express the quantity to optimize in terms of the variables.
- ④ **Relate variables:** Use additional equations or constraints to rewrite the formula as a function of one variable.
- ⑤ **Determine the domain:** Identify valid values for the variable(s) based on the physical context of the problem.
- ⑥ **Find the optimal value:** Differentiate the function, locate critical numbers, and justify the maximum or minimum using appropriate methods.
- ⑦ **State the final answer:** Provide a clear sentence with units, ensuring the solution satisfies the problem's constraints.

Maximizing the Volume of a Box

An open-top box is to be made from a 24 in. by 36 in. piece of cardboard by removing a square from each corner of the box and folding up the flaps on each side. What size square should be cut out of each corner to get a box with the maximum volume?

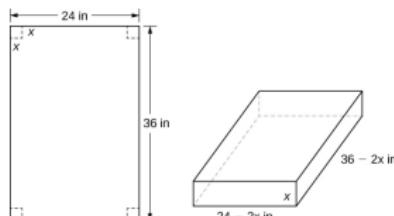
Problem Setup and Volume Function

Objective: Maximize the volume of an open-top box formed by cutting squares from a rectangular sheet.

Setup:

- Dimensions of cardboard: 36 in by 24 in.
- x : Side length of the square cut from each corner (in inches).
- Box dimensions after folding:
 - Height: x ,
 - Length: $36 - 2x$,
 - Width: $24 - 2x$.
- Volume formula:

$$V(x) = (36 - 2x)(24 - 2x)x = 4x^3 - 120x^2 + 864x.$$



Domain and Critical Numbers

Domain:

- $x > 0$ (side length must be positive).
- $x < 12$ (squares cannot exceed half the shorter side).
- Domain: $x \in [0, 12]$.

Find Critical Numbers:

$$V'(x) = 12x^2 - 240x + 864.$$

Solve $V'(x) = 0$:

$$12x^2 - 240x + 864 = 0 \implies x^2 - 20x + 72 = 0.$$

Using the quadratic formula:

$$x = 10 \pm 2\sqrt{7}.$$

Valid Critical Point: $x = 10 - 2\sqrt{7} \approx 4.708.$

Maximum Volume and Final Answer

Maximum Volume:

$$V(10 - 2\sqrt{7}) = 4(10 - 2\sqrt{7})^3 - 120(10 - 2\sqrt{7})^2 + 864(10 - 2\sqrt{7}).$$

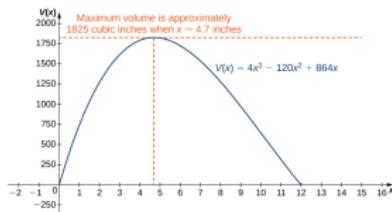
Approximation:

$$V \approx 1825 \text{ in}^3.$$

Optimal Dimensions:

- Height: $x \approx 4.708$ in,
- Length: $36 - 2x \approx 26.584$ in,
- Width: $24 - 2x \approx 14.584$ in.

Final Answer: The maximum volume is approximately 1825 in^3 with optimal dimensions as listed above.



Minimizing Travel Time

An island is located 2 mi due north of its closest point along a straight shoreline. A visitor is staying at a cabin on the shore, which is 6 mi west of that closest point. The visitor plans to travel from the cabin to the island.

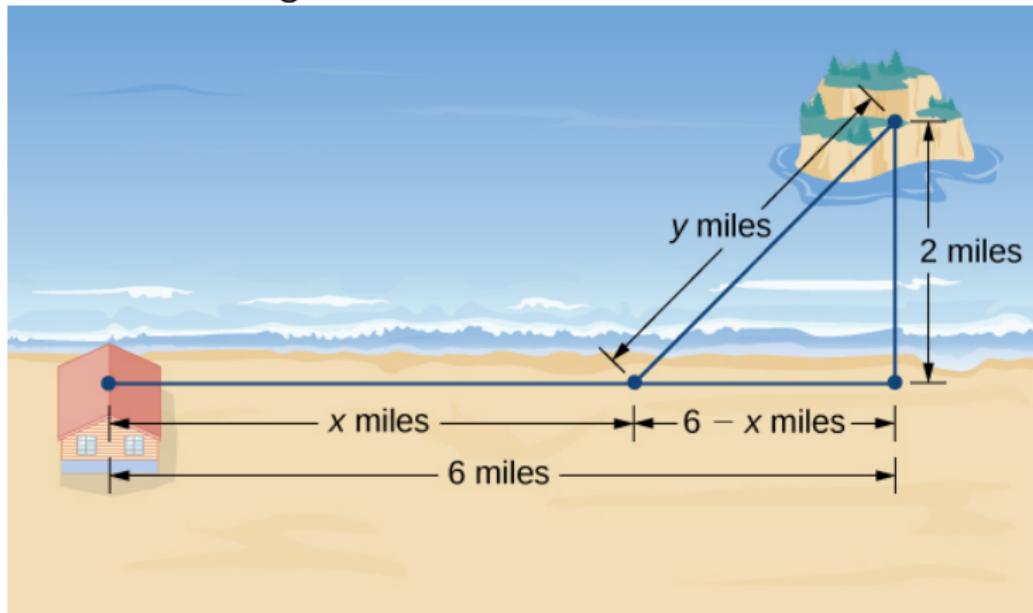
Suppose the visitor:

- Runs at a speed of 8 mph,
- Swims at a speed of 3 mph.

Question: How far should the visitor run along the shoreline before swimming to minimize the total time it takes to reach the island?

Solution

Let x be the distance running and let y be the distance swimming . Let T be the time it takes to get from the cabin to the island.



Step 2: The problem is to minimize T .

Step 3: To find the time spent traveling from the cabin to the island, add the time spent running and the time spent swimming. Since Distance = Rate \times Time, the time spent running is:

$$T_{\text{running}} = \frac{D_{\text{running}}}{R_{\text{running}}} = \frac{x}{8},$$

and the time spent swimming is:

$$T_{\text{swimming}} = \frac{D_{\text{swimming}}}{R_{\text{swimming}}} = \frac{y}{3}.$$

Therefore, the total time spent traveling is:

$$T = \frac{x}{8} + \frac{y}{3}.$$

Step 4: From (Figure), the line segment of y miles forms the hypotenuse of a right triangle with legs of length 2 mi and $6 - x$ mi. Therefore, by the Pythagorean theorem:

$$2^2 + (6 - x)^2 = y^2,$$

and we obtain:

$$y = \sqrt{(6 - x)^2 + 4}.$$

Solution

Thus, the total time spent traveling is given by the function:

$$T(x) = \frac{x}{8} + \frac{\sqrt{(6-x)^2 + 4}}{3}.$$

Step 5: From (Figure), we see that $0 \leq x \leq 6$. Therefore, $[0, 6]$ is the domain of consideration.

Step 6: Finding Critical Numbers

Since $T(x)$ is a continuous function over a closed, bounded interval, it has a maximum and a minimum. Let's begin by looking for any critical numbers of T over the interval $[0, 6]$. The derivative is:

$$T'(x) = \frac{1}{8} - \frac{1}{2} [(6-x)^2 + 4]^{-1/2} \cdot 2(6-x) = \frac{1}{8} - \frac{(6-x)}{3\sqrt{(6-x)^2 + 4}}.$$

If $T'(x) = 0$, then:

$$\frac{1}{8} = \frac{6-x}{3\sqrt{(6-x)^2 + 4}}.$$

Therefore:

$$3\sqrt{(6-x)^2 + 4} = 8(6-x).$$

Squaring both sides of this equation, we see that if x satisfies this equation, then x must satisfy:

$$9[(6-x)^2 + 4] = 64(6-x)^2,$$

which implies:

$$55(6-x)^2 = 36.$$

We conclude that if x is a critical number, then x satisfies:

$$(6-x)^2 = \frac{36}{55}.$$

Therefore, the possibilities for critical numbers are:

$$x = 6 \pm \frac{6}{\sqrt{55}}.$$

Since $x = 6 + \frac{6}{\sqrt{55}}$ is not in the domain, it is not a possibility for a critical number. On the other hand, $x = 6 - \frac{6}{\sqrt{55}}$ is in the domain. Since we squared both sides to arrive at the possible critical numbers, it remains to verify that $x = 6 - \frac{6}{\sqrt{55}}$ satisfies the equation.

Since $x = 6 - \frac{6}{\sqrt{55}}$ does satisfy that equation, we conclude that it is the critical number.

$$x = 6 \pm \frac{6}{\sqrt{55}}.$$

Since $x = 6 + \frac{6}{\sqrt{55}}$ is not in the domain, it is not a possibility for a critical number. On the other hand, $x = 6 - \frac{6}{\sqrt{55}}$ is in the domain. Since we squared both sides to arrive at the possible critical numbers, it remains to verify that $x = 6 - \frac{6}{\sqrt{55}}$ satisfies the equation.

Solution

Since $x = 6 - \frac{6}{\sqrt{55}}$ does satisfy that equation, we conclude that:

$$x = 6 - \frac{6}{\sqrt{55}}$$

is a critical number, and it is the only one. To justify that the time is minimized for this value of x , we just need to check the values of $T(x)$ at the endpoints $x = 0$ and $x = 6$, and compare them with the value of $T(x)$ at the critical number $x = 6 - \frac{6}{\sqrt{55}}$.

We find that:

$$T(0) \approx 2.108 \text{ h}, \quad T(6) \approx 1.417 \text{ h}, \quad \text{whereas} \quad T\left(6 - \frac{6}{\sqrt{55}}\right) \approx 1.368 \text{ h.}$$

Therefore, we conclude that T has a local minimum at:

$$x \approx 5.19 \text{ mi.}$$

Maximizing Revenue

Owners of a car rental company have determined that if they charge customers p dollars per day to rent a car, where $50 \leq p \leq 200$, the number of cars n they rent per day can be modeled by the linear function:

$$n(p) = 1000 - 5p.$$

- If they charge 50 per day or less, they will rent all their cars. — If they charge 200 per day or more, they will not rent any cars.

Assuming the owners plan to charge customers between 50 per day and 200 per day to rent a car, how much should they charge to maximize their revenue?

Step 1: Problem Setup

Objective: Maximize the daily revenue of a car rental company.

Variables:

- p : Price charged per car per day ($50 \leq p \leq 200$).
- n : Number of cars rented per day.
- R : Revenue per day.

Model:

- $n(p) = 1000 - 5p$: Linear function modeling the number of cars rented as a function of p .
- Revenue formula: $R = n \times p$.

Step 2: Revenue Function

The revenue (per day) is given by:

$$R(p) = n(p) \times p.$$

Substituting $n(p) = 1000 - 5p$:

$$R(p) = (1000 - 5p)p = -5p^2 + 1000p.$$

Goal: Maximize $R(p)$ for p in the interval $[50, 200]$.

Step 3: Critical Numbers

To maximize $R(p)$, find its derivative and solve $R'(p) = 0$:

$$R'(p) = -10p + 1000.$$

Setting $R'(p) = 0$:

$$-10p + 1000 = 0 \implies p = 100.$$

Critical Point: $p = 100$.

Step 4: Evaluate Revenue at Endpoints

Evaluate $R(p)$ at the critical point and the endpoints of the interval $[50, 200]$:

- At $p = 100$:

$$R(100) = -5(100)^2 + 1000(100) = \$50,000.$$

- At $p = 50$:

$$R(50) = -5(50)^2 + 1000(50) = \$37,500.$$

- At $p = 200$:

$$R(200) = -5(200)^2 + 1000(200) = \$0.$$

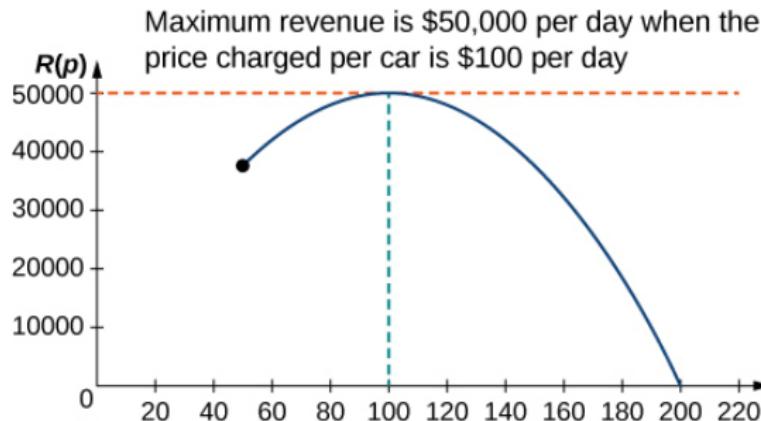
Step 5: Conclusion

Result:

- The revenue is maximized at $p = 100$.
- Maximum revenue: $R(100) = \$50,000$.

Recommendation:

- The car rental company should charge \$100 per day per car to maximize daily revenue.



Problem Statement

Maximizing the Area of an Inscribed Rectangle

A rectangle is to be inscribed in the ellipse:

$$\frac{x^2}{4} + y^2 = 1$$

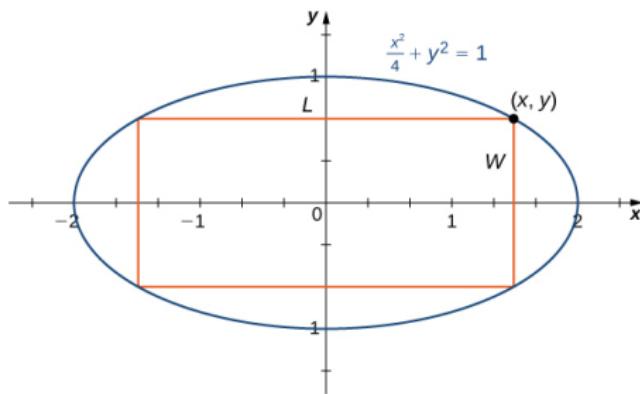
Determine:

- The dimensions of the rectangle that maximize its area.
- The maximum area.

Step 1: Geometry of the Problem

- The ellipse $\frac{x^2}{4} + y^2 = 1$ has x -intercepts ± 2 and y -intercepts ± 1 .
- An inscribed rectangle has:
 - Length $L = 2x$ (horizontal).
 - Width $W = 2y$ (vertical).
- The area of the rectangle is:

$$A = L \cdot W = 2x \cdot 2y = 4xy$$



Step 2: Substituting Constraints

- From the ellipse equation:

$$\frac{x^2}{4} + y^2 = 1 \implies y = \sqrt{1 - \frac{x^2}{4}}$$

- Substitute y into the area formula:

$$A = 4x \sqrt{1 - \frac{x^2}{4}} = 2x \sqrt{4 - x^2}$$

Step 3: Domain and Critical Points

- $x \in [0, 2]$ (rectangle in the first quadrant).
- The derivative of $A(x)$ is:

$$A'(x) = \frac{d}{dx} \left(2x\sqrt{4 - x^2} \right)$$

Simplifying:

$$A'(x) = \frac{8 - 4x^2}{\sqrt{4 - x^2}}$$

- Solve $A'(x) = 0$ to find critical points:

$$8 - 4x^2 = 0 \implies x^2 = 2 \implies x = \sqrt{2}$$

Step 4: Dimensions and Maximum Area

- At $x = \sqrt{2}$:

$$y = \sqrt{1 - \frac{x^2}{4}} = \sqrt{1 - \frac{2}{4}} = \frac{1}{\sqrt{2}}$$

- Dimensions of the rectangle:

$$L = 2x = 2\sqrt{2}, \quad W = 2y = \sqrt{2}$$

- Maximum area:

$$A = L \cdot W = (2\sqrt{2})(\sqrt{2}) = 4$$

Optimization Example: Box Surface Area

Problem: Minimize the surface area of an open-top rectangular box with volume 216 in³.

Surface Area:

$$S(x) = 4xy + x^2$$

Volume Constraint:

$$x^2y = 216 \implies y = \frac{216}{x^2}$$

Substitute y into $S(x)$:

$$S(x) = 864/x + x^2$$

PSS: Justify a Maximum or Minimum on an Open Interval

Step 1: Analyze the Limits

- Take the limit of the function as the variable approaches the endpoints of the interval.
- If both limits are less than the function value at the critical number, the largest value at the critical points is the **absolute maximum** (similar for minimum).
- If at least one limit is larger (or smaller) than the critical values or diverges to infinity, then no maximum (or minimum) exists.

Step 2: Check Monotonicity

- Verify if the function is **increasing** to the left of the critical number and **decreasing** to the right (or vice versa).
- If true, the critical number corresponds to an **absolute maximum** (or minimum).

Step 3: Verify with Critical Numbers

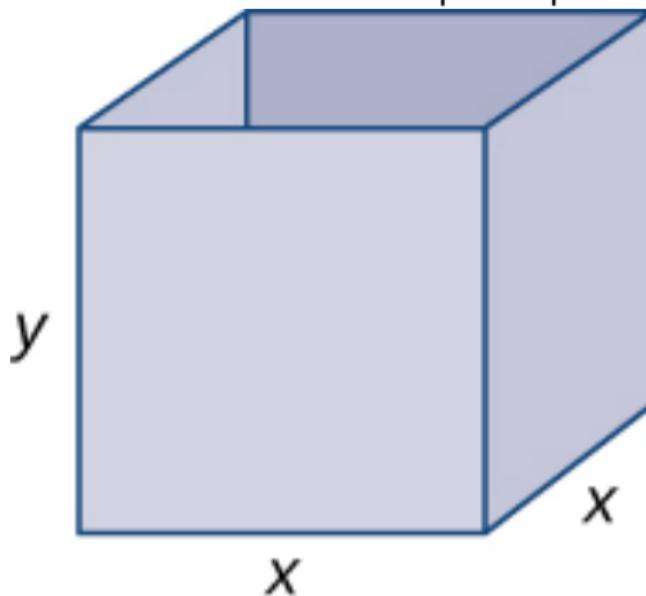
- If there is only **one critical number** on the interval, and the function has a **local maximum** (or minimum) at this value, it is also the **absolute maximum** (or minimum).

Minimizing Surface Area

A rectangular box with a square base, an open top, and a volume of 216 in. 3 is to be constructed. What should the dimensions of the box be to minimize the surface area of the box? What is the minimum surface area?

Solution: Step 1

Step 1: Draw a rectangular box and introduce the variable x to represent the length of each side of the square base; let y represent the height of the box. Let S denote the surface area of the open-top box.



Solution: Steps 2-4

Step 2: We need to minimize the surface area. Therefore, we need to minimize S .

Step 3: Since the box has an open top, we need only determine the area of the four vertical sides and the base.

- The area of each of the four vertical sides is $x \cdot y$.
- The area of the base is x^2 .

Therefore, the surface area of the box is:

$$S = 4xy + x^2$$

Step 4: Since the volume of this box is x^2y and the volume is given as 216 in.³, the constraint equation is:

$$x^2y = 216$$

Solving the constraint equation for y , we have $y = \frac{216}{x^2}$. Therefore, we can write the surface area as a function of x only:

$$S(x) = 4x \left(\frac{216}{x^2} \right) + x^2$$

Solution: Steps 5 and 6

Step 5: Domain Analysis

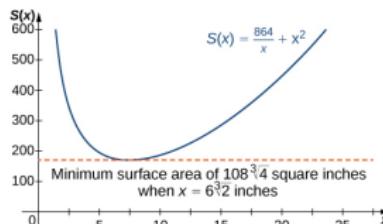
- Since $x^2y = 216$, $x > 0$ and x is unbounded. Domain: $(0, \infty)$.
- As $x \rightarrow 0^+$ or $x \rightarrow \infty$, $S(x) \rightarrow \infty$. Therefore, $S(x)$ must have an absolute minimum on $(0, \infty)$.

Step 6: Finding the Minimum

- Derivative: $S'(x) = -\frac{864}{x^2} + 2x$.
- Solve $S'(x) = 0$: $x^3 = 432 \implies x = 6\sqrt[3]{2}$.
- At $x = 6\sqrt[3]{2}$, $y = \frac{216}{(6\sqrt[3]{2})^2} = 3\sqrt[3]{2}$.

Results:

$$x = 6\sqrt[3]{2} \text{ in.}, \quad y = 3\sqrt[3]{2} \text{ in.}, \quad S = 108\sqrt[3]{4} \text{ in.}^2$$



Key Concepts for Solving Optimization Problems

- ① **Draw a Picture:** Begin by drawing a diagram to visualize the problem and introducing variables to represent key quantities.
- ② **Relate the Variables:** Find an equation that relates the variables in the problem.
- ③ **Define the Function:** Write the quantity to be minimized or maximized as a function of a single variable.
- ④ **Find Critical Numbers:** Compute the derivative, find critical numbers, and determine the local extrema.

Curve Sketching (omit oblique asymptotes)

Clotilde Djuikem

Learning Objectives

- **Objective 1:** Analyze a function and its derivatives to draw its graph.
- **Objective 2:** Integrate the use of the first and second derivatives with other features of a function to create an accurate graph of $f(x)$.

Description:

In this section, we explore a comprehensive approach to graphing functions. By combining knowledge of derivatives with other analytical tools, you will be able to sketch the shape and key features of any given function.

Problem-Solving Strategy: Drawing the Graph of a Function

Steps:

- ① **Determine the Domain:** Identify all x -values for which the function is defined.
- ② **Intercepts:** Locate x - and y -intercepts.
- ③ **End Behavior:** Evaluate $\lim_{x \rightarrow \infty} f(x)$ and $\lim_{x \rightarrow -\infty} f(x)$ to find horizontal or oblique asymptotes.
- ④ **Vertical Asymptotes:** Check for x -values where the function approaches $\pm\infty$.
- ⑤ **First Derivative Analysis ($f'(x)$):**
 - Identify critical points.
 - Determine intervals of increase and decrease.
 - Locate local extrema.
- ⑥ **Second Derivative Analysis ($f''(x)$):**
 - Determine concavity (up or down).
 - Find inflection points.
 - Confirm or verify extrema.

Sketching a Graph of a Polynomial

Example: Sketch a graph of $f(x) = (x - 1)^2(x + 2)$

Step 1: Determine the Domain

Function: $f(x) = (x - 1)^2(x + 2)$

- $f(x)$ is a polynomial, so it is defined for all real numbers.
- **Domain:** \mathbb{R} (all real numbers).

Step 2: Locate the Intercepts

- **y -Intercept:**

$$f(0) = (0 - 1)^2(0 + 2) = 2 \implies \text{Intercept: } (0, 2).$$

- **x -Intercepts:** Solve $(x - 1)^2(x + 2) = 0$:

$$x = 1 \quad (\text{multiplicity 2}), \quad x = -2.$$

- **Intercept Points:** $(1, 0), (-2, 0)$.

Step 3: End Behavior

Evaluate $\lim_{x \rightarrow \infty} f(x)$ and $\lim_{x \rightarrow -\infty} f(x)$:

- As $x \rightarrow \infty$:

$$(x - 1)^2 \rightarrow \infty, \quad (x + 2) \rightarrow \infty \implies \lim_{x \rightarrow \infty} f(x) = \infty.$$

- As $x \rightarrow -\infty$:

$$(x - 1)^2 \rightarrow \infty, \quad (x + 2) \rightarrow -\infty \implies \lim_{x \rightarrow -\infty} f(x) = -\infty.$$

Step 4: Vertical Asymptotes

Observation:

- $f(x)$ is a polynomial function.
- Polynomial functions do not have vertical asymptotes.
- **Conclusion:** No vertical asymptotes exist for $f(x)$.

Step 5: First Derivative Analysis

First Derivative:

$$f'(x) = 3x^2 - 3 = 3(x - 1)(x + 1).$$

Critical Numbers: Solve $f'(x) = 0$:

$$x = 1, \quad x = -1.$$

Divide the domain into intervals and test $f'(x)$:

- $(-\infty, -1) : f'(x) > 0$ (increasing).
- $(-1, 1) : f'(x) < 0$ (decreasing).
- $(1, \infty) : f'(x) > 0$ (increasing).

Local Extrema:

$$f(-1) = 4 \quad (\text{local max}), \quad f(1) = 0 \quad (\text{local min}).$$

Step 6: Second Derivative and Concavity

Second Derivative:

$$f''(x) = 6x.$$

Concavity Analysis:

- $(-\infty, 0) : f''(x) < 0$ (concave down).
- $(0, \infty) : f''(x) > 0$ (concave up).

Inflection point at $x = 0$.

Summary of Key Points:

- Intervals of increase: $(-\infty, -1), (1, \infty)$.
- Intervals of decrease: $(-1, 1)$.
- Local maximum: $(-1, 4)$, local minimum: $(1, 0)$.
- Concave up: $(0, \infty)$, concave down: $(-\infty, 0)$.
- Inflection point: $(0, f(0)) = (0, 2)$.

Graph of $f(x) = (x - 1)^2(x + 2)$

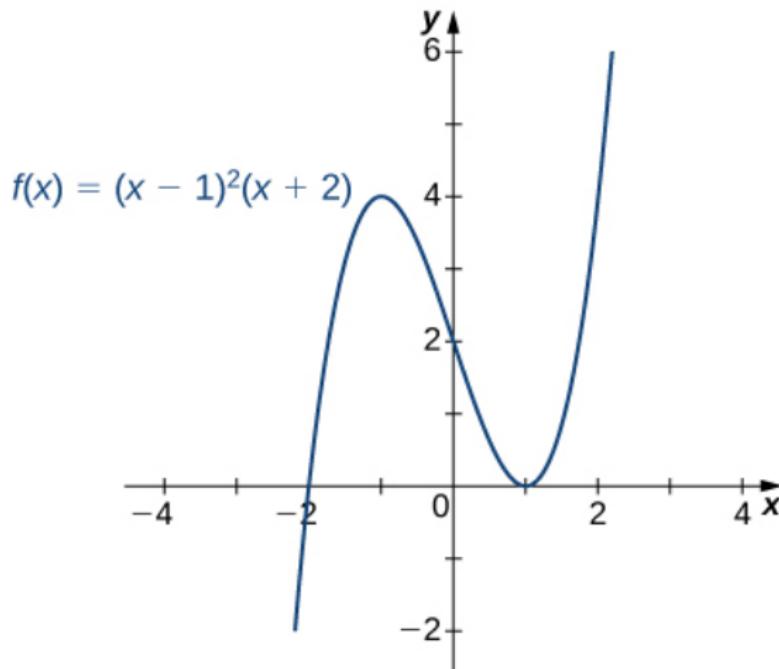


Figure:

Exercice

Sketching the Graph of $f(x) = (x - 1)^3(x + 2)$

Step 1: Determine the Domain

Function: $f(x) = (x - 1)^3(x + 2)$

- $f(x)$ is a polynomial, so it is defined for all real numbers.
- **Domain:** \mathbb{R} (all real numbers).

Step 2: Locate the Intercepts

- **y -Intercept:**

$$f(0) = (0 - 1)^3(0 + 2) = (-1)^3(2) = -2.$$

y -Intercept: $(0, -2)$.

- **x -Intercepts:** Solve $(x - 1)^3(x + 2) = 0$:

$$x = 1 \quad (\text{multiplicity 3}), \quad x = -2 \quad (\text{multiplicity 1}).$$

x -Intercepts: $(1, 0), (-2, 0)$.

Step 3: Evaluate End Behavior

- The degree of $f(x)$ is 4 (even degree), and the leading coefficient is positive.
- As $x \rightarrow \infty$:

$$(x - 1)^3 \rightarrow \infty, \quad (x + 2) \rightarrow \infty \implies \lim_{x \rightarrow \infty} f(x) = \infty.$$

- As $x \rightarrow -\infty$:

$$(x - 1)^3 \rightarrow -\infty, \quad (x + 2) \rightarrow -\infty \implies \lim_{x \rightarrow -\infty} f(x) = \infty.$$

- **Conclusion:** Both ends of the graph go to ∞ .

Step 4: Check for Vertical Asymptotes

Observation:

- $f(x)$ is a polynomial function.
- Polynomial functions do not have vertical asymptotes.
- **Conclusion:** No vertical asymptotes exist for $f(x)$.

Step 5: Analyze $f'(x)$

First Derivative:

$$f'(x) = 3(x-1)^2(x+2) + (x-1)^3 = (x-1)^2(4x+5).$$

Critical Numbers: Solve $f'(x) = 0$:

- $(x-1)^2 = 0 \implies x = 1$.
- $4x + 5 = 0 \implies x = -\frac{5}{4}$.

Divide the domain into intervals and test the sign of $f'(x)$, the derivative signed change only with $4x - 5$ because $(x-1)^2 \geq 0$:

- $(-\infty, -\frac{5}{4}) : f'(x) > 0$ (decreasing).
- $(-\frac{5}{4}, 1) : f'(x) > 0$ (increasing).
- $(1, \infty) : f'(x) > 0$ (increasing).

Step 6: Analyze $f''(x)$

Second Derivative:

$$f''(x) = 6(x - 1)(2x + 1).$$

Concavity Analysis:

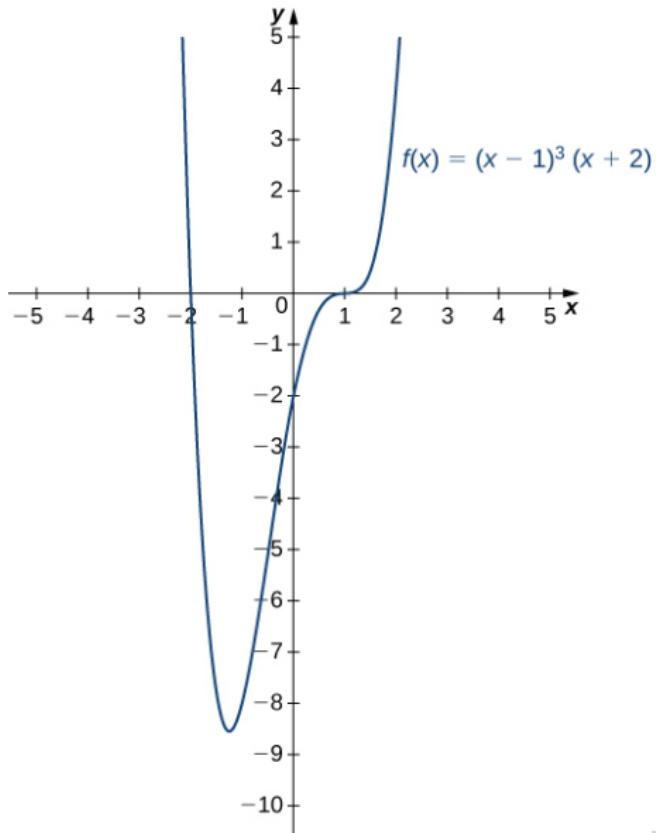
- $(-\infty, -\frac{1}{2}) : f''(x) > 0$ (concave up).
- $(-\frac{1}{2}, 1) : f''(x) < 0$ (concave down).
- $(1, \infty) : f''(x) > 0$ (concave up).

Inflection points at $x = -\frac{1}{2}$ and $x = 1$.

Summary of Key Points:

- Intervals of increase: $(-\frac{5}{4}, \infty)$.
- Intervals of decrease: $(-\infty, -\frac{5}{4})$.
- Local minimum: At $x = -\frac{5}{4}$
- Concave up: $(-\infty, -\frac{1}{2})$, $(1, \infty)$ concave down: $(-\infty, 0)$.
- Inflection points: $(-\frac{1}{2}, f(-\frac{1}{2}))$ and $(1, f(1))$.

Graph of $f(x) = (x - 1)^3(x + 2)$



Approximating Areas

Clotilde Djuikem

Learning Objectives

- Use sigma (summation) notation to calculate sums and powers of integers.
- Use the sum of rectangular areas to approximate the area under a curve.
- Use Riemann sums to approximate area.

Definitions

Proof

Let x such that $f(x) = x^2$

Example

Consider the function $f(x) = \frac{x}{x^2+2}$

Antiderivatives

Clotilde Djuikem

Learning Objectives

- **Find the general antiderivative of a given function.**
 - Learn to determine the most general form of a function's antiderivative.
- **Explain the terms and notation used for an indefinite integral.**
 - Understand key concepts such as the integral sign (\int) and the constant of integration ($+C$).
- **State the power rule for integrals.**
 - Master the rule: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$, where $n \neq -1$.
- **Use antidifferentiation to solve simple initial-value problems.**
 - Apply integration techniques to find specific solutions when initial conditions are provided.

Definition and Derivation

Definition

A function F is an antiderivative of the function f if

$$F'(x) = f(x)$$

for all x in the domain of f .

Derivation Example

Let $f(x) = 2x$. To find the antiderivative $F(x)$, we solve:

$$F'(x) = f(x) = 2x.$$

By integrating, we obtain:

$$F(x) = \int 2x \, dx = x^2, \quad F(x) = x^2 - 2, \quad F(x) = x^2 - 10$$

General Form of an Antiderivative

Definition

Let F be an antiderivative of f over an interval I . Then:

- ① For each constant C , the function $F(x) + C$ is also an antiderivative of f over I .
- ② If G is an antiderivative of f over I , there is a constant C for which $G(x) = F(x) + C$ over I .

Key Result

In other words, the most general form of the antiderivative of f over I is:

$$F(x) + C.$$

Functions and Their Antiderivatives

Function $f(x)$	Antiderivative $F(x)$
$4x^3$	$x^4 + C$
$\cos(x)$	$\sin(x) + C$
e^x	$e^x + C$
$\frac{1}{x}$	$\ln x + C$
$\sin(x)$	$-\cos(x) + C$
5	$5x + C$
x^{-2}	$-\frac{1}{x} + C$

Definition

Definition

Given a function f , the indefinite integral of f , denoted

$$\int f(x) dx,$$

is the most general antiderivative of f . If F is an antiderivative of f , then:

$$\int f(x) dx = F(x) + C.$$

The expression $f(x)$ is called the *integrand*, and the variable x is the *variable of integration*.

Examples

Example

Let $f(x) = 3x^2$. To find its general antiderivative, solve:

$$F'(x) = f(x) = 3x^2.$$

Integrating, we obtain:

$$F(x) = \int 3x^2 \, dx = x^3 + C.$$

Thus, the general form of the antiderivative is $F(x) + C = x^3 + C$, where C is a constant.

Example 1: Polynomial Function

Find the general antiderivative of $f(x) = 4x^3$.

$$F(x) = \int 4x^3 \, dx = \frac{4x^4}{4} + C = x^4 + C.$$

Examples

Example 2: Trigonometric Function

Find the general antiderivative of $f(x) = \cos(x)$.

$$F(x) = \int \cos(x) \, dx = \sin(x) + C.$$

Example 3: Exponential Function

Find the general antiderivative of $f(x) = e^x$.

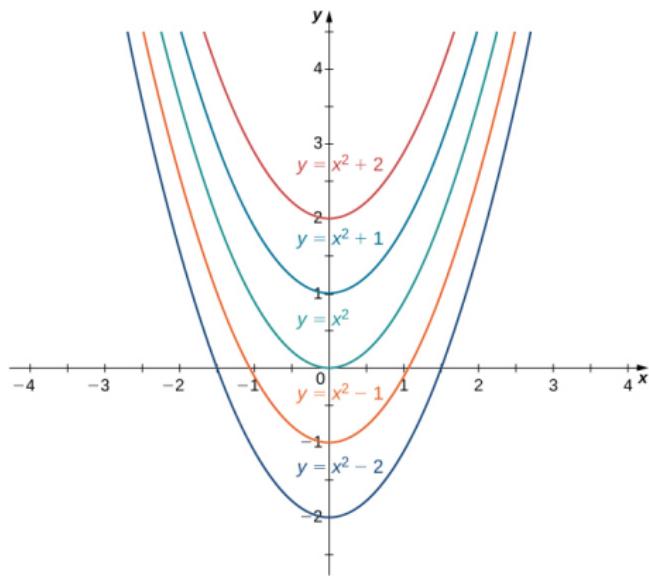
$$F(x) = \int e^x \, dx = e^x + C.$$

Example 4: Reciprocal Function

Find the general antiderivative of $f(x) = \frac{1}{x}$ for $x > 0$.

$$F(x) = \int \frac{1}{x} \, dx = \ln(x) + C.$$

$$\int 2x \, dx = x^2 + C.$$



For different values of C

Differentiation Formulas and Indefinite Integrals

Differentiation Formula	Indefinite Integral
$\frac{d}{dx}(k) = 0$	$\int k \, dx = kx + C$
$\frac{d}{dx}(x^n) = nx^{n-1}$	$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$
$\frac{d}{dx}(\ln x) = \frac{1}{x}$	$\int \frac{1}{x} \, dx = \ln x + C$
$\frac{d}{dx}(e^x) = e^x$	$\int e^x \, dx = e^x + C$
$\frac{d}{dx}(\sin x) = \cos x$	$\int \cos x \, dx = \sin x + C$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\int \csc x \cot x \, dx = -\csc x + C$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\int \sec x \tan x \, dx = \sec x + C$
$\frac{d}{dx}(\cos x) = -\sin x$	$\int \sin x \, dx = -\cos x + C$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\int \sec^2 x \, dx = \tan x + C$
$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\int \csc^2 x \, dx = -\cot x + C$
$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C$
$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} \, dx = \tan^{-1} x + C$
$\frac{d}{dx}(\sec^{-1} x) = \frac{1}{x\sqrt{x^2-1}}$	$\int \frac{1}{x\sqrt{x^2-1}} \, dx = \sec^{-1} x + C$

Properties of Indefinite Integrals

Properties

Let F and G be antiderivatives of f and g , respectively, and let k be any real number.

Sums and Differences

$$\int (f(x) \pm g(x)) dx = F(x) \pm G(x) + C$$

Constant Multiples

$$\int kf(x) dx = kF(x) + C$$

Solving an Initial-Value Problem

Problem: Solve the initial-value problem:

$$\frac{dy}{dx} = \sin x, \quad y(0) = 5.$$

Solution:

- First, solve the differential equation. If

$$\frac{dy}{dx} = \sin x,$$

then

$$y = \int \sin(x)dx = -\cos x + C.$$

- Apply the initial condition $y(0) = 5$. Substituting:

$$-\cos(0) + C = 5.$$

- Solve for C :

$$C = 5 + \cos(0) = 6.$$

Final Solution:

$$y = -\cos x + 6.$$

Solving an Initial Value Problem

Problem: Solve the initial value problem:

$$\frac{dy}{dx} = 3x^{-2}, \quad y(1) = 2.$$

Solution:

- Start by solving the differential equation. Integrate both sides:

$$y = \int 3x^{-2} dx = 3 \int x^{-2} dx = 3(-x^{-1}) + C.$$

Thus,

$$y = -\frac{3}{x} + C.$$

- Use the initial condition $y(1) = 2$ to find C :

$$2 = -\frac{3}{1} + C \implies C = 2 + 3 = 5.$$

- Therefore, the solution to the initial value problem is:

$$y = -\frac{3}{x} + 5.$$

Decelerating Car

A car is traveling at the rate of 88 ft/sec (60 mph) when the brakes are applied. The car begins decelerating at a constant rate of 15 ft/sec^2 .

- a. How many seconds elapse before the car stops?
- b. How far does the car travel during that time?

Decelerating Car Solution

Solution:

a. Time to Stop:

- Let t represent time (in seconds), $a(t)$ be the acceleration, $v(t)$ the velocity, and $s(t)$ the position of the car. The initial velocity is $v(0) = 88$ ft/sec, and the deceleration is constant: $a(t) = -15$ ft/sec 2 .
- From $v'(t) = a(t) = -15$, solve the initial-value problem:

$$v'(t) = -15, \quad v(0) = 88.$$

- Integrate:

$$v(t) = \int -15 \, dt = -15t + C.$$

- Using $v(0) = 88$, solve for C : $C = 88$, so:

$$v(t) = -15t + 88.$$

- The car stops when $v(t) = 0$:

$$0 = -15t + 88 \implies t = \frac{88}{15} \approx 5.87 \text{ seconds.}$$

Decelerating Car Solution

Solution:

b. Distance Traveled:

- The velocity $v(t)$ is the derivative of the position $s(t)$. Solve the initial-value problem:

$$s'(t) = v(t) = -15t + 88, \quad s(0) = 0.$$

- Integrate:

$$s(t) = \int (-15t + 88) dt = -\frac{15}{2}t^2 + 88t + C.$$

- Using $s(0) = 0$, solve for C : $C = 0$, so:

$$s(t) = -\frac{15}{2}t^2 + 88t.$$

- Evaluate $s(t)$ at $t = \frac{88}{15}$:

$$s\left(\frac{88}{15}\right) = -\frac{15}{2}\left(\frac{88}{15}\right)^2 + 88\left(\frac{88}{15}\right) = \frac{7744}{30} \approx 258.133 \text{ ft.}$$

Stopping Distance Problem

Suppose the car is traveling at the rate of 44 ft/sec.

- ① How long does it take for the car to stop?
- ② How far will the car travel during this time?

Gravity

A rock is dropped from the top of a building 10 metres above the ground on Earth.

- a. How long until the rock hits the ground?
- b. With what velocity does the rock hit the ground?

Key Concepts

Key Concepts

- If F is an antiderivative of f , then every antiderivative of f is of the form $F(x) + C$ for some constant C .
- Solving the initial-value problem

$$\frac{dy}{dx} = f(x), \quad y(x_0) = y_0$$

requires us first to find the set of antiderivatives of f and then to look for the particular antiderivative that also satisfies the initial condition.