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Learning Objectives

1 Recognize the basic limit laws.

2 Use the limit laws to evaluate the limit of a function.

3 Evaluate the limit of a function by factoring.

4 Use the limit laws to evaluate the limit of a polynomial or rational
function.

5 Evaluate the limit of a function by factoring or by using conjugates.

6 Evaluate the limit of a function by using the squeeze theorem.
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Basic Limit Results

The first two limit laws

For any real number a and any constant c :

lim
x→a

x = a

lim
x→a

c = c

Examples

1 limx→2 x = 2

2 limx→5 3 = 3

3 limx→0(−7) = −7

4 limx→−4 x
2 = 16

5 limx→1(2x + 1) = 3
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Limit Laws (Part 1)

Let f (x) and g(x) be defined for all x ̸= a over some open interval
containing a. Assume that L and M are real numbers such that

lim
x→a

f (x) = L and lim
x→a

g(x) = M

Let c be a constant. Then, each of the following statements holds:

Sum Law

lim
x→a

(f (x) + g(x)) = lim
x→a

f (x) + lim
x→a

g(x) = L+M

Difference Law

lim
x→a

(f (x)− g(x)) = lim
x→a

f (x)− lim
x→a

g(x) = L−M

Constant Multiple Law

lim
x→a

(c · f (x)) = c · lim
x→a

f (x) = c · L
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Limit Laws (Part 2)

Product Law

lim
x→a

(f (x) · g(x)) = lim
x→a

f (x) · lim
x→a

g(x) = L ·M

Quotient Law

lim
x→a

f (x)

g(x)
=

limx→a f (x)

limx→a g(x)
=

L

M
, for M ̸= 0

Power Law

lim
x→a

(f (x))n =
(
lim
x→a

f (x)
)n

= Ln

Root Law

lim
x→a

n
√

f (x) = n

√
lim
x→a

f (x) =
n
√
L

For all L if n is odd, and for L ≥ 0 if n is even.
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Evaluating a Limit Using Limit Laws (Example 1)

Use the limit laws to evaluate

lim
x→−3

(4x + 2).

Solution:

lim
x→−3

(4x + 2) = lim
x→−3

4x + lim
x→−3

2

(Apply the Sum Law)

= 4 · lim
x→−3

x + lim
x→−3

2

(Apply the Constant Multiple Law)

= 4 · (−3) + 2

(Substitute x = −3)

= −12 + 2

= −10
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Evaluating a Limit Using Limit Laws (Example 2)

Use the limit laws to evaluate

lim
x→2

2x2 − 3x + 1

x3 + 4
.

Solution:

lim
x→2

2x2 − 3x + 1

x3 + 4
=

limx→2(2x
2 − 3x + 1)

limx→2(x3 + 4)

(Apply the Quotient Law)

=
2 · limx→2 x

2 − 3 · limx→2 x + limx→2 1

(limx→2 x)3 + limx→2 4

(Apply the Sum Law and Constant Multiple Law)

=
2 · (2)2 − 3 · 2 + 1

23 + 4

(Substitute x = 2)

=
2 · 4− 6 + 1

8 + 4
=

8− 6 + 1

12
=

3

12
=

1

4
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Evaluating a Limit Using Limit Laws (Example 3)

Use the limit laws to evaluate

lim
x→4

√
x2 + 1.

Solution:

lim
x→4

√
x2 + 1 =

√
lim
x→4

(x2 + 1)

(Apply the Root Law)

=
√
(4)2 + 1

(Substitute x = 4)

=
√
16 + 1

=
√
17

=
√
17
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Evaluating a Limit Using Limit Laws (Example 4)

Use the limit laws to evaluate

lim
x→2

(x2 · sin(x)).

Solution:

lim
x→2

(x2 · sin(x)) =
(
lim
x→2

x2
)
·
(
lim
x→2

sin(x)
)

(Apply the Product Law)

= (2)2 · sin(2)
(Substitute x = 2)

= 4 · sin(2)
= 4 sin(2)
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Evaluating a Limit Using Limit Laws (Example 5)

Use the limit laws to evaluate

lim
x→6

2x − 1
3
√
x + 4

.

Solution:

lim
x→6

2x − 1
3
√
x + 4

=
limx→6(2x − 1)

limx→6( 3
√
x + 4)

(Apply the Quotient Law)

=
limx→6(2x − 1)

limx→6
3
√
x + limx→6 4

(Apply the Sum Law)

=
2 · limx→6 x − 1
3
√
limx→6 x + 4

(Apply the Constant Multiple Law and Power Law)

=
2 · 6− 1
3
√
6 + 4

=
12− 1
3
√
6 + 4

=
11

3
√
6 + 4
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Limits of Polynomial and Rational Functions

Limits of Polynomial Functions

Let p(x) and q(x) be polynomial functions. Let a be a real number. Then,

lim
x→a

p(x) = p(a)

lim
x→a

p(x)

q(x)
=

p(a)

q(a)
when q(a) ̸= 0.

Example: Evaluate

lim
x→3

2x2 − 3x + 1

5x + 4
.

Solution: Since 3 is in the domain of that rational function we can calculate the
limit by substituting x = 3 into the function. Thus,

lim
x→3

2x2 − 3x + 1

5x + 4
=

2(3)2 − 3(3) + 1

5(3) + 4
=

2 · 9− 9 + 1

15 + 4
=

18− 9 + 1

19
=

10

19
.
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Evaluating a Limit of a Rational Function (Example 1)

Evaluate

lim
x→2

3x2 − 4x + 1

x + 1
.

Solution

Since x = 2 is in the domain of the function

f (x) =
3x2 − 4x + 1

x + 1
,

we can calculate the limit by direct substitution:

lim
x→2

3x2 − 4x + 1

x + 1
=

3(2)2 − 4(2) + 1

2 + 1

=
12− 8 + 1

3
=

5

3
.
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Evaluating a Limit of a Rational Function (Example 2)

Evaluate

lim
x→4

x2 − 16

x − 4
.

Solution

Since x = 4 is in the domain of the function

f (x) =
x2 − 16

x − 4
,

we can use factoring:

lim
x→4

x2 − 16

x − 4
= lim

x→4

(x − 4)(x + 4)

x − 4
= lim

x→4
(x + 4).

Substituting x = 4:

4 + 4 = 8.
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Steps to Solve Limits with Indeterminate Form 0
0

Step 1: Verify the Indeterminate Form

- Ensure that the function has the form f (x)
g(x) =

0
0 and cannot be evaluated

directly using limit laws.

Step 2: Simplify the Expression

- Try to find a function h(x) = f (x)
g(x) for all x ̸= a near a. - Factor and

cancel common terms if f (x) and g(x) are polynomials. - If square roots
are involved, multiply by the conjugate. - If the fraction is complex,
simplify it first.

Step 3: Apply Limit Laws

- After simplifying, apply the appropriate limit laws to calculate the final
limit.
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Example: Calculating limx→2
x2−4
x−2

Step 1: Verify the Indeterminate Form

Substitute x = 2 into the function:

(2)2 − 4

2− 2
=

4− 4

0
=

0

0

This results in the indeterminate form 0
0 .

Step 2: Simplify the Expression

Factor the numerator x2 − 4 (difference of squares):

x2 − 4

x − 2
=

(x − 2)(x + 2)

x − 2
= x + 2 for x ̸= 2

Step 3: Apply the Limit Laws
Now substitute x = 2 into the simplified expression:

lim
x→2

(x + 2) = 2 + 2 = 4
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Example: Evaluating limx→5

√
x−1−2
x−5

Step 1: Verify the Indeterminate Form
Substitute x = 5 into the expression: √

5 − 1 − 2

5 − 5
=

√
4 − 2

0
=

2 − 2

0
=

0

0

This gives the indeterminate form 0
0
, so we proceed to simplify.

Step 2: Simplify Using Conjugates
Multiply the numerator and denominator by the conjugate of the numerator:

√
x − 1 − 2

x − 5
·
√
x − 1 + 2

√
x − 1 + 2

=
(
√
x − 1)2 − 22

(x − 5)(
√
x − 1 + 2)

Simplify the numerator:

=
x − 1 − 4

(x − 5)(
√
x − 1 + 2)

=
x − 5

(x − 5)(
√
x − 1 + 2)

=
1

√
x − 1 + 2

Step 3: Apply the Limit Laws
Now substitute x = 5 into the simplified expression:

lim
x→5

1
√
x − 1 + 2

=
1

√
5 − 1 + 2

=
1

2 + 2
=

1

4
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Example: Evaluating limx→1

1
x+1−

1
2

x−1

Step 1: Verify the Indeterminate Form
Substitute x = 1 into the expression:

1
1+1

− 1
2

1 − 1
=

1
2
− 1

2

0
=

0

0

This gives the indeterminate form 0
0
, so we proceed to simplify.

Step 2: Simplify the Complex Fraction
Simplify the numerator by combining the two fractions:

1

x + 1
−

1

2
=

2 − (x + 1)

2(x + 1)
=

1 − x

2(x + 1)

Substitute this into the limit expression:

lim
x→1

1−x
2(x+1)

x − 1
= lim

x→1

1 − x

2(x + 1)
·

1

x − 1
= lim

x→1

−(x − 1)

2(x + 1)(x − 1)
= lim

x→1

−1

2(x + 1)

Step 3: Apply the Limit Laws
Now substitute x = 1:

−1

2(1 + 1)
= −

1

4
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Evaluating a Limit When the Limit Laws Do Not Apply

Problem

Evaluate limx→0

(
1
x + 5

x(x−5)

)
.

Solution

Both 1
x and 5

x(x−5) fail to have a limit at zero. Since neither of the two functions

has a limit at zero, we cannot apply the sum law for limits; we must use a
different strategy. In this case, we find the limit by performing addition and then
applying one of our previous strategies.
Observe that:

1

x
+

5

x(x − 5)
=

x − 5 + 5

x(x − 5)
=

x

x(x − 5)

Thus,

lim
x→0

(
1

x
+

5

x(x − 5)

)
= lim

x→0

x

x(x − 5)
= lim

x→0

1

x − 5
= −1

5

Therefore, lim
x→0

(
1

x
+

5

x(x − 5)

)
= −1

5
.
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Indeterminate Forms in Limits

Common Indeterminate Forms

When evaluating limits, certain expressions are indeterminate, meaning
they require further analysis to find the limit. Here are the most common
indeterminate forms:

0
0 - Example: limx→0

sin x
x

∞
∞ - Example: limx→∞

x2

ex

0 · ∞ - Example: limx→0 x · ln x
∞−∞ - Example: limx→∞(

√
x2 + 1− x)

1∞ - Example: limx→0+ (1 + x)1/x

00 - Example: limx→0+ xx

∞0 - Example: limx→0+(x
−1)x

These indeterminate forms require techniques such as L’Hopital’s Rule,
factoring, or algebraic manipulation to resolve.
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Evaluating a Limit of the Form K
0 ,K ̸= 0 Using the Limit

Laws

Problem

Evaluate limx→2
x−3

x2−2x
.

Solution
Step 1. After substituting x = 2, we see that this limit has the form −1

0
. That is, as x approaches 2 from the left, the

numerator approaches −1 and the denominator approaches 0. Consequently, the magnitude of x−3
x(x−2)

becomes infinite. To get

a better idea of what the limit is, we need to factor the denominator:

lim
x→2

x − 3

x2 − 2x
= lim

x→2

x − 3

x(x − 2)
.

Step 2. Since x − 2 is the only part of the denominator that is zero when 2 is substituted, we then separate 1
x−2

from the rest

of the function:

= lim
x→2

x − 3

x
·

1

x − 2
.

Step 3.

lim
x→2

x − 3

x
=

−1

2
and lim

x→2

1

x − 2
= −∞.

Therefore, the product of x−3
x

and 1
x−2

has a limit of +∞:

lim
x→2

x − 3

x2 − 2x
= +∞.
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The Squeeze Theorem

Figure: The Squeeze Theorem
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The Squeeze Theorem

The Squeeze Theorem

Let f (x), g(x), and h(x) be defined for all x ̸= a such that:

f (x) ≤ g(x) ≤ h(x)

for all x ̸= a in an open interval containing a and

lim
x→a

f (x) = L = lim
x→a

h(x)

where L is a real number. Then:

lim
x→a

g(x) = L
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Applying the Squeeze Theorem

Problem:

Apply the Squeeze Theorem to evaluate limx→0 x cos x .

Solution:

We know that for all x ,
−1 ≤ cos x ≤ 1

Multiplying through by x (assuming x ≥ 0) gives:

−x ≤ x cos x ≤ x
By taking the limit as x → 0 on both sides:

lim
x→0

−x = 0 and lim
x→0

x = 0

Thus, by the Squeeze Theorem:
lim
x→0

x cos x = 0

Clotilde Djuikem 23 / 28



Applying the Squeeze Theorem

Problem:

Apply the Squeeze Theorem to evaluate limx→0 x cos x .

Solution:

We know that for all x ,
−1 ≤ cos x ≤ 1

Multiplying through by x (assuming x ≥ 0) gives:

−x ≤ x cos x ≤ x
By taking the limit as x → 0 on both sides:

lim
x→0

−x = 0 and lim
x→0

x = 0

Thus, by the Squeeze Theorem:
lim
x→0

x cos x = 0

Clotilde Djuikem 23 / 28



Evaluating a Limit of a Rational Function (Example 3)

Evaluate

lim
x→0

sin x

x
.

Solution

This is a standard limit result that is known to be:

lim
x→0

sin x

x
= 1.
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Evaluating an Important Trigonometric Limit

Problem:

Evaluate limθ→0
1−cos θ

θ .

Solution

In the first step, we multiply by the conjugate so that we can use a
trigonometric identity to convert the cosine in the numerator to a sine:

lim
θ→0

1− cos θ

θ
= lim

θ→0

1− cos θ

θ
· 1 + cos θ

1 + cos θ

= lim
θ→0

1− cos2 θ

θ(1 + cos θ)
= lim

θ→0

sin2 θ

θ(1 + cos θ)

Now, apply known trigonometric limits:

lim
θ→0

sin θ

θ
· lim
θ→0

sin θ

1 + cos θ
= 1 · 0 = 0

Therefore:

lim
θ→0

1− cos θ

θ
= 0
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Evaluate limθ→0
sin 3θ
sin 2θ

Solution

We already know that limx→0
sin x
x = 1. Using x = 3θ and x = 2θ and

noting that in both cases as θ → 0, then x → 0, we can conclude that:

lim
θ→0

sin 3θ

3θ
= 1 and lim

θ→0

sin 2θ

2θ
= 1

Hence, we can determine that:

lim
θ→0

sin 3θ

sin 2θ
= lim

θ→0

3θ

2θ
· lim
θ→0

sin 3θ

3θ
· 1

limθ→0
sin 2θ
2θ

=
3

2
· lim
θ→0

sin 3θ

3θ
· 1

limθ→0
sin 2θ
2θ

=
3

2
· 1 · 1

1
=

3

2

Therefore:

lim
θ→0

1− cos θ

θ
= 0
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Key Concepts

Key Concepts

The limit laws allow us to evaluate limits of functions without
having to go through step-by-step processes each time.

For polynomials and rational functions,

lim
x→a

f (x) = f (a)

You can evaluate the limit of a function by factoring and
canceling, by multiplying by a conjugate, or by simplifying a
complex fraction.

The Squeeze Theorem allows you to find the limit of a function if
the function is always greater than one function and less than
another function with limits that are known.
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Key Equations

Basic Limit Results

lim
x→a

x = a

lim
x→a

c = c

Important Limits

lim
θ→0

sin θ = 0

lim
θ→0

cos θ = 1

lim
θ→0

sin θ

θ
= 1

lim
θ→0

1− cos θ

θ
= 0
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Limits at Infinity and Asymptotes

Clotilde Djuikem
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Learning Objectives

Calculate the limit of a function as x increases or decreases without
bound.

Recognize a horizontal asymptote on the graph of a function.

Estimate the end behavior of a function as x increases or decreases
without bound.

Recognize an oblique asymptote on the graph of a function.
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Definition

Definition

(Informal) If the values of f (x) become arbitrarily close to L as x becomes
sufficiently large, we say the function f has a limit at infinity and write

lim
x→∞

f (x) = L.

If the values of f (x) become arbitrarily close to L for x < 0 as |x | becomes
sufficiently large, we say that the function f has a limit at negative infinity
and write

lim
x→−∞

f (x) = L.
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Values of a Function as x → ±∞

Figure 1. The function approaches the asymptote y = 2.

x 10 100 1,000 10,000

2 + 1
x 2.1 2.01 2.001 2.0001

x -10 -100 -1,000 -10,000

2 + 1
x 1.9 1.99 1.999 1.9999

Values of a function f as x → ±∞
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Definition

Horizontal asymptote

If lim
x→∞

f (x) = L or lim
x→−∞

f (x) = L, we say the line y = L is a horizontal

asymptote of f .
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Particular case for Horizontal aymptote

A function cannot cross a vertical asymptote because the graph must
approach infinity (or −∞) from at least one direction as x approaches the
vertical asymptote. However, a function may cross a horizontal asymptote.
In fact, a function may cross a horizontal asymptote an unlimited number
of times. For example, the function

f (x) =
cos x

x
+ 1

intersects the horizontal asymptote y = 1 an infinite number of times as it
oscillates around the asymptote with ever-decreasing amplitude.

Figure: The graph of f (x) = cos x
x + 1 crosses its horizontal asymptote y = 1 an

infinite number of times.
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Example 1

For each of the following functions f , we will evaluate lim
x→∞

f (x) and

lim
x→−∞

f (x) to determine the horizontal asymptote(s).

a. f (x) = 5− 2
x2

lim
x→∞

f (x) = 5− 2
∞ = 5 and lim

x→−∞
f (x) = 5− 2

∞ = 5

Horizontal asymptote: y = 5
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Example 2

b. f (x) = sin x
x

lim
x→∞

f (x) = lim
x→∞

sin x
x = 0 and lim

x→−∞
f (x) = lim

x→−∞
sin x
x = 0

Horizontal asymptote: y = 0
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Example 2
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Example 3

c. f (x) = tan−1(x)

lim
x→∞

f (x) = π
2 and lim

x→−∞
f (x) = −π

2

Horizontal asymptotes: y = π
2 and y = −π

2
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Example 3
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Computing the Limit of f (x) = tan−1(x) at Infinity and
Negative Infinity

To determine the horizontal asymptotes of the function f (x) = tan−1(x),
we need to evaluate the limits as x approaches ∞ and −∞.

1. Limit as x → ∞:

The function tan−1(x) (also known as arctan(x)) represents the angle
whose tangent is x .
As x increases towards ∞, the angle tan−1(x) approaches its
maximum value, which is π

2 .
Therefore,

lim
x→∞

tan−1(x) =
π

2
.

2. Limit as x → −∞:

Similarly, as x decreases towards −∞, the angle tan−1(x) approaches
its minimum value, which is −π

2 .
Therefore,

lim
x→−∞

tan−1(x) = −π

2
.

Conclusion:

The function f (x) = tan−1(x) has two horizontal asymptotes:

y =
π

2
and y = −π

2
.
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Evaluate

lim
x→∞

(
3 +

4

x

)
and lim

x→−∞

(
3 +

4

x

)
.

Determine the horizontal asymptotes of f (x) = 3 + 4
x , if any.
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Definition

Definition

(Informal) We say a function f has an infinite limit at infinity and write

lim
x→∞

f (x) = ∞.

if f (x) becomes arbitrarily large for x sufficiently large. We say a function
has a negative infinite limit at infinity and write

lim
x→∞

f (x) = −∞.

if f (x) < 0 and |f (x)| becomes arbitrarily large for x sufficiently large.
Similarly, we can define infinite limits as x → −∞.
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Definition

Formal Definition

We say a function f has a limit at infinity if there exists a real number L
such that for all ϵ > 0, there exists N > 0 such that

|f (x)− L| < ϵ for all x > N.

In that case, we write
lim
x→∞

f (x) = L.

We say a function f has a limit at negative infinity if there exists a real
number L such that for all ϵ > 0, there exists N < 0 such that

|f (x)− L| < ϵ for all x < N.

In that case, we write
lim

x→−∞
f (x) = L.
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Graph of Limit

Figure: |f (x)− L| < ϵ for all x < N.
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A Finite Limit at Infinity Example

Use the formal definition of limit at infinity to prove that

lim
x→∞

(
2 +

1

x

)
= 2.

Solution

Let ϵ > 0. Let N = 1
ϵ . Therefore, for all x > N, we have∣∣∣∣2 + 1

x
− 2

∣∣∣∣ = ∣∣∣∣1x
∣∣∣∣ = 1

x
<

1

N
= ϵ.
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A Finite Limit at Infinity Example

Use the formal definition of limit at infinity to prove that

lim
x→∞

(
3− 1

x2

)
= 3.

Hint

Let N = 1√
ϵ
.

Solution

Let ϵ > 0. Let N = 1√
ϵ
. Therefore, for all x > N, we have∣∣∣∣3− 1

x2
− 3

∣∣∣∣ = ∣∣∣∣ 1x2
∣∣∣∣ < 1

N2
= ϵ.

Therefore,
lim
x→∞

(
3− 1

x2

)
= 3.
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Definition

Formal Definition

We say a function f has an infinite limit at infinity and write

lim
x→∞

f (x) = ∞

if for all M > 0, there exists an N > 0 such that

f (x) > M for all x > N.

We say a function has a negative infinite limit at infinity and write

lim
x→∞

f (x) = −∞

if for all M < 0, there exists an N > 0 such that

f (x) < M for all x > N.
Similarly, we can define limits as x → −∞.

Clotilde Djuikem 17 / 21



Infinity limit graph
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An Infinite Limit at Infinity

Use the formal definition of infinite limit at infinity to prove that

lim
x→∞

x3 = ∞.

Solution

Let M > 0. Let N = 3
√
M. Then, for all x > N, we have

x3 > M.

Therefore, limx→∞ x3 = ∞.
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An Infinite Limit at Infinity

Use the formal definition of infinite limit at infinity to prove that

lim
x→∞

3x2 = ∞.

Hint

Let N =
√

M
3 .

Solution

Let M > 0. Let N =
√

M
3 . Then, for all x > N, we have

3x2 > M.

Therefore, limx→∞ 3x2 = ∞.
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Key Concepts

The limit of f (x) is L as x → ∞ (or as x → −∞) if the values f (x)
become arbitrarily close to L as x becomes sufficiently large.

The limit of f (x) is ∞ as x → ∞ if f (x) becomes arbitrarily large as
x becomes sufficiently large. The limit of f (x) is −∞ as x → ∞ if
f (x) < 0 and |f (x)| becomes arbitrarily large as x becomes sufficiently
large. We can define the limit of f (x) as x approaches −∞ similarly.
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Learning Objectives

Explain the three conditions for continuity at a point.

Describe three kinds of discontinuities.

Define continuity on an interval.

State the theorem for limits of composite functions.

Provide an example of the Intermediate Value Theorem.
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Continuity at a Point

Definition

A function f (x) is continuous at a point a if and only if the following three
conditions are satisfied:

1 f (a) is defined.

2 limx→a f (x) exists.

3 limx→a f (x) = f (a).
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Problem-Solving Strategy: Determining Continuity at a
Point

1. Check to see if f (a) is defined. If f (a) is undefined, we need go no
further. The function is not continuous at a. If f (a) is defined, continue to
step 2.

2. Compute lim
x→a

f (x). In some cases, we may need to do this by first

computing lim
x→a−

f (x) and lim
x→a+

f (x). If lim
x→a

f (x) does not exist (that is, it

is not a real number), then the function is not continuous at a and the
problem is solved. If lim

x→a
f (x) exists, then continue to step 3.

3. Compare f (a) and lim
x→a

f (x). If lim
x→a

f (x) ̸= f (a), then the function is

not continuous at a. If lim
x→a

f (x) = f (a), then the function is continuous at
a.
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Example: Continuity at a Point

Problem: Using the definition, determine whether the function

f (x) =

{
sin x
x if x ̸= 0

1 if x = 0

is continuous at x = 0.

Solution:

First, observe that f (0) = 1.

Next,

lim
x→0

f (x) = lim
x→0

sin x

x
= 1.

Last, compare f (0) and limx→0 f (x). We see that

f (0) = 1 = lim
x→0

f (x).

Since all three of the conditions in the definition of continuity are
satisfied, f (x) is continuous at x = 0.
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Example: Continuity at a Point

Problem: Using the definition, determine whether the function

f (x) =


2x + 1 if x < 1

2 if x = 1

−x + 4 if x > 1

is continuous at x = 1. If the function is not continuous at 1, indicate the
condition for continuity at a point that fails to hold.
Solution:

First, calculate f (1): f (1) = 2.

Next, compute lim
x→1−

f (x) and lim
x→1+

f (x):

lim
x→1−

(2x + 1) = 3. and lim
x→1+

(−x + 4) = 3.

Since lim
x→1−

f (x) = lim
x→1+

f (x) = 3, we have: limx→1 f (x) = 3.

Compare f (1) with lim
x→1

f (x): f (1) = 2 and limx→1 f (x) = 3.

Since f (1) ̸= lim
x→1

f (x), the function is not continuous at x = 1.
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Continuity of Polynomials and Rational Functions

Theorem

Polynomials and rational functions are continuous at every point in their
domains.

Example: Determine the points of discontinuity for f (x) = x+1
x−5 .

f (x) is continuous for all x ̸= 5.
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Continuity on an Interval

Definition

A function f (x) is continuous over an interval if it is continuous at every
point in that interval. For a closed interval [a, b], f (x) must also be
continuous from the right at a and from the left at b.

Example: Determine the intervals over which f (x) =
√
4− x2 is

continuous.

f (x) is continuous over the interval [−2, 2].
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Example: Continuity at a Point

Problem: Using the definition, determine whether the function

f (x) =

{
−x2 + 4 if x ≤ 3

4x − 8 if x > 3

is continuous at x = 3. Justify the conclusion.

Solution:

Let’s begin by trying to calculate f (3):

f (3) = −(3)2 + 4 = −5.

Thus, f (3) is defined. Next, we calculate lim
x→3

f (x). To do this, we

must compute lim
x→3−

f (x) and lim
x→3+

f (x):

lim
x→3−

f (x) = −(3)2 + 4 = −5 and lim
x→3+

f (x) = 4(3)− 8 = 4.

Therefore, limx→3 f (x) does not exist. Thus, f (x) is not continuous
at 3.
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Types of Discontinuities

Definition

Removable Discontinuity: A discontinuity at a where limx→a f (x)
exists but f (a) is not defined or f (a) ̸= limx→a f (x).

Jump Discontinuity: A discontinuity at a where
limx→a− f (x) ̸= limx→a+ f (x).

Infinite Discontinuity: A discontinuity at a where limx→a f (x) is ∞
or −∞.

Example: For f (x) = x+2
x+1 , identify the discontinuity at x = −1.

The function f (x) has an infinite discontinuity at x = −1 because
limx→−1 f (x) = ±∞.
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Types of Discontinuities
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Classifying a Discontinuity

Problem:

f (x) =
x2 − 4

x − 2

Classify this discontinuity as removable, jump, or infinite.

Solution:
To classify the discontinuity at 2, we must evaluate lim

x→2
f (x):

lim
x→2

f (x) = lim
x→2

x2 − 4

x − 2
= lim

x→2

(x − 2)(x + 2)

x − 2
= lim

x→2
(x + 2) = 4

Since f is discontinuous at 2 and lim
x→2

f (x) exists, f has a removable

discontinuity at x = 2.
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Classifying a Discontinuity

Problem: In (Figure), we showed that

f (x) =

{
−x2 + 4 if x ≤ 3

4x − 8 if x > 3

is discontinuous at x = 3. Classify this discontinuity as removable, jump,
or infinite.

Solution:
Earlier, we showed that f is discontinuous at 3 because lim

x→3
f (x) does not

exist. However, since

lim
x→3−

f (x) = −5 and lim
x→3+

f (x) = 4

both exist, we conclude that the function has a jump discontinuity at 3.
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Composite Function Theorem

Theorem

If f (x) is continuous at L and limx→a g(x) = L, then

lim
x→a

f (g(x)) = f
(
lim
x→a

g(x)
)
= f (L).

Example: Evaluate

lim
x→π/2

cos
(
x − π

2

)
.

Solution:
The given function is a composite of cos x and x − π

2 . Since

lim
x→π/2

(
x − π

2

)
= 0

and cos x is continuous at 0, we may apply the composite function
theorem. Thus,

lim
x→π/2

cos
(
x − π

2

)
= cos

(
lim

x→π/2

(
x − π

2

))
= cos(0) = 1.
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Limit of a Sine Function

Problem: Evaluate
lim
x→π

sin(x − π).

Solution:

The given function is a composite of the sine function and x − π.
First, calculate the inner limit:

lim
x→π

(x − π) = 0.

Since the sine function sin x is continuous for all real numbers, we can
use the composite function theorem. Thus, we can substitute the
limit of the inner function into the sine function:

lim
x→π

sin(x − π) = sin
(
lim
x→π

(x − π)
)
= sin(0).

Now, evaluate sin(0):
sin(0) = 0.

Therefore,
lim
x→π

sin(x − π) = 0.
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Continuity of Trigonometric Functions

Continuity

Trigonometric functions are continuous over their entire domains.

Continuityon an Interval

If a polynomial, rational, trigonometric, inverse trigonometric, exponential,
logarithmic, or radical function is defined on an interval, then it is
continuous on that interval.
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Intermediate Value Theorem

Theorem

If f is continuous on a closed interval [a, b] and z is any real number
between f (a) and f (b), then there exists a number c ∈ [a, b] such that
f (c) = z .
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Application of the Intermediate Value Theorem

Problem: Show that
f (x) = x − cos x

has at least one zero.
Solution:

Since f (x) = x − cos x is continuous over (−∞,+∞), it is
continuous over any closed interval of the form [a, b]. If you can find
an interval [a, b] such that f (a) and f (b) have opposite signs, you can
use the Intermediate Value Theorem to conclude there must be a real
number c in (a, b) that satisfies f (c) = 0.
Note that

f (0) = 0− cos(0) = −1 < 0

and
f
(π
2

)
=

π

2
− cos

(π
2

)
=

π

2
> 0.

Using the Intermediate Value Theorem, we can see that there must
be a real number c in [0, π/2] that satisfies f (c) = 0. Therefore,
f (x) = x − cos x has at least one zero.
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When Can You Apply the Intermediate Value Theorem?

Problem: If f (x) is continuous over [0, 2], f (0) > 0, and f (2) > 0, can we
use the Intermediate Value Theorem to conclude that f (x) has no zeros in
the interval [0, 2]? Explain.
Solution:

No. The Intermediate Value Theorem only allows us to conclude that
we can find a value between f (0) and f (2); it doesn’t allow us to
conclude that we can’t find other values.

To see this more clearly, consider the function

f (x) = (x − 1)2.

It satisfies
f (0) = 1 > 0, f (2) = 1 > 0,

and
f (1) = 0.

This function has a zero at x = 1 despite f (0) > 0 and f (2) > 0.
Thus, we cannot conclude that f (x) has no zeros in the interval [0, 2].
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Key Concepts

A function is continuous at a point if it is defined, its limit exists, and
the limit equals the function value.

Discontinuities can be classified as removable, jump, or infinite.

The Composite Function Theorem and Intermediate Value Theorem
help establish the continuity of more complex functions.

Continuity is essential for analyzing the behavior of functions over
intervals.
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