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Parametric Equations and Their Graphs Eliminating the Parameter Cycloids and Other Parametric Curves

Learning Objectives

Plot a curve described by parametric equations.

Convert the parametric equations of a curve into the form y = f (x).

Recognize the parametric equations of basic curves, such as a line and
a circle.

Recognize the parametric equations of a cycloid.
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Definition

If x and y are continuous functions of t on an interval I , then the
equations

x = x(t) and y = y(t)

are called parametric equations and t is called the parameter. The set of
points (x , y) obtained as t varies over the interval I is called the graph of
the parametric equations. The graph of parametric equations is also called
a parametric curve or plane curve, and is denoted by C .
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Graphing Parametrically Defined Curves

1st:

x(t) = t − 1

y(t) = 2t + 4

−3 ≤ t ≤ 2

x

y

C1

2nd:

x(t) = t2 − 3

y(t) = 2t + 1

−2 ≤ t ≤ 3

x

y

C2

3rd:

x(t) = 4 cos t

y(t) = 4 sin t

0 ≤ t ≤ 2π

x

y

C3
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Example 1

Sketch the curves described by the following parametric equations:

x(t) = t − 1, y(t) = 2t + 4, −3 ≤ t ≤ 2

To create a graph of this curve, first set up a table of values. Since the
independent variable in both x(t) and y(t) is t, let t appear in the first
column.

t x(t) y(t)

−3 −4 −2
−2 −3 0
−1 −2 2
0 −1 4
1 0 6
2 1 8

The arrows on the graph indicate the orientation of the graph, that is, the direction that a point moves on the graph as t varies
from -3 to 2.
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Example 2

Sketch the curves described by the following parametric equations:

x(t) = t2 − 3, y(t) = 2t + 1, −2 ≤ t ≤ 3

t x(t) y(t)

−2 1 −3
−1 −2 −1
0 −3 1
1 −2 3
2 1 5
3 6 7

As t progresses from -2 to 3, the point on the curve travels along a parabola. The direction the point moves is again called the
orientation and is indicated on the graph.
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Example 3

Sketch the curves described by the following parametric equations:

x(t) = 4 cos t, y(t) = 4 sin t, 0 ≤ t ≤ 2π

t x(t) y(t) t x(t) y(t)

0 4 0 7π
6 −2

√
3 ≈ −3.5 2

π
6 2

√
3 ≈ 3.5 2 2 4π

3 −2
√
3 ≈ −3.5

π
3 2 2

√
3 ≈ 3.5 3π

2 0 −4
π
2 0 4 5π

3 2 −2
√
3 ≈ −3.5

2π
3 −2 2

√
3 ≈ 3.5 11π

6 2
√
3 ≈ 3.5 2

5π
6 −2

√
3 ≈ −3.5 2 2π 4 0

π −4 0

This is the graph of a circle with radius 4 centered at the origin, with a counterclockwise orientation. The starting point and
ending point of the curve both have coordinates (4, 0).

Math 1700 (University of Manitoba) 7.1 Parametric Equations Winter 2024 8 / 21



Parametric Equations and Their Graphs Eliminating the Parameter Cycloids and Other Parametric Curves

Example 3

Sketch the curves described by the following parametric equations:

x(t) = 4 cos t, y(t) = 4 sin t, 0 ≤ t ≤ 2π

t x(t) y(t) t x(t) y(t)

0 4 0 7π
6 −2

√
3 ≈ −3.5 2

π
6 2

√
3 ≈ 3.5 2 2 4π

3 −2
√
3 ≈ −3.5

π
3 2 2

√
3 ≈ 3.5 3π

2 0 −4
π
2 0 4 5π

3 2 −2
√
3 ≈ −3.5

2π
3 −2 2

√
3 ≈ 3.5 11π

6 2
√
3 ≈ 3.5 2

5π
6 −2

√
3 ≈ −3.5 2 2π 4 0

π −4 0

This is the graph of a circle with radius 4 centered at the origin, with a counterclockwise orientation. The starting point and
ending point of the curve both have coordinates (4, 0).

Math 1700 (University of Manitoba) 7.1 Parametric Equations Winter 2024 8 / 21



Parametric Equations and Their Graphs Eliminating the Parameter Cycloids and Other Parametric Curves

Sketching the Curve

Sketch the curve described by the parametric equations:

x(t) = 3t + 2, y(t) = t2 − 1, −3 ≤ t ≤ 2

Math 1700 (University of Manitoba) 7.1 Parametric Equations Winter 2024 9 / 21



Parametric Equations and Their Graphs Eliminating the Parameter Cycloids and Other Parametric Curves

Rewriting Parametric Equations

To better understand the graph of a curve represented parametrically, it is
useful to rewrite the two equations as a single equation relating the
variables x and y . For example, consider the parametric equations:

x(t) = t2 − 3, y(t) = 2t + 1, −2 ≤ t ≤ 3

Solving the second equation for t gives:

t =
y − 1

2

This can be substituted into the first equation:

x =

(
y − 1

2

)2

− 3 =
(y2 − 2y + 1)

4
− 3 =

y2 − 2y − 11

4

This equation describes x as a function of y .
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Eliminating the Parameter: Example 1

Eliminate the parameter for each of the plane curves described by the following
parametric equations and describe the resulting graph:

x(t) =
√
2t + 4, y(t) = 2t + 1, −2 ≤ t ≤ 6

Solution: To eliminate the parameter, we can solve either of the equations for t.
For example, solving the first equation for t gives:

x =
√
2t + 4 ⇒ t =

x2 − 4

2

Note that when we square both sides, it is important to observe that x ≥ 0.

Substituting t = x2−4
2 into y(t) yields:

y(t) = 2t + 1 = 2

(
x2 − 4

2

)
+ 1 = x2 − 4 + 1 = x2 − 3
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Part 2 example 1

y = x2 − 3, this is the equation of a parabola opening upward. There is,
however, a domain restriction because of the limits on the parameter t.
When t = −2, x =

√
2(−2) + 4 = 0, and when t = 6,

x =
√

2(6) + 4 = 4. The graph of this plane curve follows.
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Eliminating the Parameter Creatively

Sometimes it is necessary to be a bit creative in eliminating the parameter.

x(t) = 4 cos(t) and y(t) = 3 sin(t).

Solving either equation for t directly is not advisable because sine and cosine are
not one-to-one functions.

cos(t) =
x

4
and sin(t) =

y

3
.

Using the Pythagorean identity cos2(t) + sin2(t) = 1 , we obtain:(x
4

)2

+
(y
3

)2

= 1.

This is the equation of a horizontal ellipse centered at the origin, with semimajor
axis 4 and semiminor axis 3.
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Eliminating the Parameter

To eliminate the parameter for the plane curve defined by the parametric
equations:

x(t) = 2 +
3

t
, y(t) = t − 1, 2 ≤ t ≤ 6

We can express t in terms of x and y : x = 2 + 3
t =⇒ t = 3

x−2 . Then substitute
t into the equation for y :

y =
3

x − 2
− 1 =⇒ y = −1 +

3

x − 2

So, we have x = 2 + 3
y+1 or y = −1 + 3

x−2 . This equation describes a portion of

a rectangular hyperbola centered at (2,−1).
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Parameterizing a Curve

Find two different pairs of parametric equations to represent the graph of
y = 2x2 − 3:

1 First Parametric Equations:

x(t) = t, y(t) = 2t2 − 3

Since there is no restriction on the domain in the original graph, there is no
restriction on the values of t.

2 Second Parametric Equations:

x(t) = 3t − 2, y(t) = 18t2 − 24t + 6

We have complete freedom in the choice for the second parameterization.
We can choose x(t) = 3t − 2 since there are no restrictions imposed on x ,
and then substitute it into the equation y = 2x2 − 3.

Therefore, the second parameterization of the curve can be written as:

x(t) = 3t − 2, y(t) = 18t2 − 24t + 6
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Parameterizing a Curve

Find two different sets of parametric equations to represent the
graph of y = x2 + 2x :

1 First Parametric Equations:

x(t) = t, y(t) = t2 + 2t

2 Second Parametric Equations:

x(t) = 2t − 3, y(t) = (2t − 3)2 + 2(2t − 3) = 4t2 − 8t + 3

There are, in fact, an infinite number of possibilities.
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The Cycloid: Nature’s Artistry

Imagine embarking on a tranquil
bicycle ride through the
countryside, where every
rotation of the tire leaves a
rhythmic mark on the road.

Picture a determined ant
seeking its way home after a
long day’s journey, hitchhiking
along the tire’s edge for a free
ride.

The path traced by this intrepid
ant on a straight road is what
we call a cycloid.
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The Cycloid: Parameterizing

Parametric equations

A cycloid generated by a circle (or bicycle wheel) of radius a is given by the
parametric equations

x(t) = a(t − sin t), y(t) = a(1− cos t)

Proof
If the radius is a, then the coordinates of the center can be given by the equations

x(t) = at, y(t) = a

A possible parameterization of the circular motion of the ant (relative to the
center of the wheel) is given by

x(t) = −a sin t, y(t) = −a cos t

Adding these equations together gives the equations for the cycloid.
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The hypocycloid.: Large wheel

Visualizing

Suppose that the bicycle wheel doesn’t travel along a straight road but instead
moves along the inside of a larger wheel, as in Figure. A point on the edge of the
green circle traces out the red graph, which is called a hypocycloid.

The general parametric equations for a hypocycloid are:

x(t) = (a− b) cos t + b cos

(
a− b

b
t

)
y(t) = (a− b) sin t − b sin

(
a− b

b
t

)
where a is the radius of the fixed circle and b is the radius of the rolling

circle.
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Examples Hypocycloid

The period of the second trigonometric function in both x (t) and y (t) is
equal to 2πb

a−b . The ratio a
b is related to the number of cusps (corners or

pointed ends) on the graph, as illustrated in the following Figure
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Key Concepts: Parametric Equations

Parametric equations provide a convenient way to describe a curve. A
parameter can represent time or some other meaningful quantity.

It is often possible to eliminate the parameter in a parameterized
curve to obtain a function or relation describing that curve.

There is always more than one way to parameterize a curve.

Parametric equations can describe complicated curves that are
difficult or perhaps impossible to describe using rectangular
coordinates.
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Outline

1 Derivatives of Parametric Equations
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Learning Objectives

1 Determine derivatives and equations of tangents for parametric
curves.

2 Find the area under a parametric curve.

3 Determine the arc length of a parametric curve.

4 Apply the formula for the surface area of the surface generated by
revolving a parametric curve about the x-axis or the y -axis.
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Challenge

Challenge

Now that we have introduced the concept of a parameterized curve, our
next step is to learn how to work with this concept in the context of
calculus. For example, if we know a parameterization of a given curve, is it
possible to calculate the slope of a tangent line to the curve? How about
the arc length of the curve? Or the area under the curve?
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Derivative of Parametric Equations

Theorem

Consider the plane curve defined by the parametric equations x = x(t) and
y = y(t). Suppose that x ′(t) and y ′(t) exist, and assume that x ′(t) ̸= 0.
Then the derivative dy

dx is given by

(∗) dy

dx
=

dy
dt
dx
dt

=
y ′(t)

x ′(t)
.
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Derivative of Parametric Equations: Example

Let

x(t) = 2t + 3,

y(t) = 3t − 4, −2 ≤ t ≤ 3.
It is a line segment starting at (−1,−10) and ending at (9, 5). We can
eliminate the parameter by first solving the equation x(t) = 2t + 3 for t:

x(t) = 2t + 3, x − 3 = 2t, t =
x − 3

2
.

Substituting this into y(t), we obtain:

y(t) = 3t − 4, y = 3

(
x − 3

2

)
− 4, y =

3x

2
− 9

2
− 4, y =

3x

2
− 17

2
.

The slope of this line is given by dy
dx = 3

2 .

Using Theorem, we calculate x ′(t) and y ′(t), which gives x ′(t) = 2 and

y ′(t) = 3. Notice that dy
dx =

dy
dt
dx
dt

= 3
2 .
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Example 1

For the parametric equations:

x(t) = t2 − 3, y(t) = 2t − 1, −3 ≤ t ≤ 4,

we first calculate dx
dt and dy

dt :
dx
dt = 2t, dy

dt = 2.

Substituting these into dy
dx :

dy

dx
=

dy
dt
dx
dt

=
2

2t
=

1

t
.

Since dy
dt ̸= 0, there are no points where the tangent line is horizontal.

Solving dx
dt = 2t = 0, we find t = 0, corresponding to the point (−3,−1)

on the curve.
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Example 2

For the parametric equations:

x(t) = 2t + 1, y(t) = t3 − 3t + 4, −2 ≤ t ≤ 2,

we first calculate dx
dt and dy

dt :
dx
dt = 2, dy

dt = 3t2 − 3.

Substituting these into dy
dx :

dy

dx
=

dy
dt
dx
dt

=
3t2 − 3

2
.

Since dx
dt ̸= 0, there are no points where the tangent line is vertical. To

find where the tangent line is horizontal, we solve dy
dt = 3t2 − 3 = 0, giving

t = ±1. At t = −1, the point (−1, 6) is on the curve, and at t = 1, the
point (3, 2) is on the curve.

Math 1700 (University of Manitoba) 7.2 Calculus of Parametric Curves Winter 2024 8 / 35



Derivatives of Parametric Equations Second-Order Derivatives Integrals Involving PE Arc Length of a PC Surface Area Generated by a PC

Example 3

For the parametric equations:

x(t) = 5 cos(t), y(t) = 5 sin(t), 0 ≤ t ≤ 2π,

we first calculate dx
dt and dy

dt :
dx
dt = −5 sin(t), dy

dt = 5 cos(t).

Substituting these into dy
dx :

dy

dx
=

dy
dt
dx
dt

= − cot(t).

Points where dy
dt = 0 occur at t = π

2 and t = 3π
2 in the interval [0, 2π].

Solving dx
dt = −5 sin(t) = 0 yields t = 0, π, 2π. The points corresponding

to these values are (5, 0), (−5, 0), (5, 0) respectively.
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Derivative and Tangent Lines

Calculate the derivative dy
dx for the curve defined by the parametric

equations

x(t) = t2 − 4t, y(t) = 2t3 − 6t, −2 ≤ t ≤ 3

and find all points on the curve where the tangent line is horizontal or
vertical.
Answer:

dy

dx
=

6t2 − 6

2t − 4
=

3t2 − 3

t − 2
The tangent line is horizontal at (−3, 4) and (5, 4), corresponding to t = 1
and t = −1 respectively. The tangent line is vertical at (−4, 4),
corresponding to t = 2.
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Slope of the Tangent Line in a Special Case

Determine the slope of the tangent line to the hypocycloid

x(t) = 3 cos(t) + cos(3t), y(t) = 3 sin(t)− sin(3t)

at the point corresponding to t = 0.
Solution: We first calculate x ′(t) and y ′(t):

x ′(t) = −3 sin(t)− 3 sin(3t), y ′(t) = 3 cos(t)− 3 cos(3t).

We see that x ′(0) = 0, and so (∗) cannot be applied to find dy
dx when

t = 0. However, x ′(t) ̸= 0 when t ∈ [−π
6 ,

π
6 ] \ {0}, x

′(t) > 0 when
t ∈

[
−π

6 , 0
)
and x ′(t) < 0 when t ∈ (0, π6 ]), and so we can consider

lim
t→0

dy

dx
= lim

t→0

y ′(t)

x ′(t)
= lim

t→0

3 cos(t)− 3 cos(3t)

−3 sin(t)− 3 sin(3t)
.

Since limt→0 (3 cos(t)− 3 cos(3t)) = 0 = limt→0 (−3 sin(t)− 3 sin(3t)),
we deal with a 0

0 indeterminate form and can apply L’Hospital’s rule:
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Part 2

lim
t→0

dy

dx
= lim

t→0

3 cos(t)− 3 cos(3t)

−3 sin(t)− 3 sin(3t)

= lim
t→0

−3 sin(t) + 9 sin(3t)

−3 cos(t)− 9 cos(3t)

=
−0 + 0

−3− 9
=

0

−12
= 0.

Therefore, when t = 0, the slope of the tangent line is zero, and hence the
tangent line to the hypocycloid is horizontal at the point (4, 0),
corresponding to t = 0, where the curve has a cusp.
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Finding a Tangent Line

Find the equation of the tangent line to the parametric curve defined by the
equations

x(t) = t2 − 3, y(t) = 2t − 1, −3 ≤ t ≤ 4

at the point corresponding to t = 2.
Solution: We first calculate x ′(t) and y ′(t):

x ′(t) = 2t, y ′(t) = 2.

Next we substitute these into (*):

dy

dx
=

y ′(t)

x ′(t)
=

2

2t
=

1

t
.

When t = 2, dy
dx = 1

2 , so this is the slope of the tangent line. Calculating x(2) and
y(2) gives x(2) = 22 − 3 = 1 and y(2) = 2(2)− 1 = 3, which corresponds to the
point (1, 3) on the curve. We now use the point-slope form of the equation of a
line to find the equation of the tangent line at this point:
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Part 2

y − y0 = m(x − x0)

y − 3 =
1

2
(x − 1)

y − 3 =
1

2
x − 1

2

y =
1

2
x +

5

2
.
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Finding the Equation of the Tangent Line

Find the equation of the tangent line to the curve defined by the equations

x(t) = t2 − 4t, y(t) = 2t3 − 6t, −2 ≤ t ≤ 3

at the point corresponding to t = 5.
Solution: We first calculate x ′(t) and y ′(t):

x ′(t) = 2t − 4, y ′(t) = 6t2 − 6.

Next, we evaluate x ′(5) = 2(5)− 4 = 6 and y ′(5) = 6(5)2 − 6 = 144. Using the
point-slope form of the equation of a line with the point (x(5), y(5)) and slope
dy
dx (5), we have:

y − y(5) =
dy

dx
(5)(x − x(5))

y − (2(5)3 − 6(5)) =
dy

dx
(5)(x − (52 − 4(5)))

y − 40 =
144

6
(x − 6), y − 40 = 24(x − 6), y = 24x + 100.

Therefore, the equation of the tangent line is y = 24x + 100.
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Second Derivative of Parametric Functions

To understand how to take the second derivative of a function defined
parametrically, we start by considering the second derivative of a function
y = f (x). The second derivative of y = f (x) is defined to be the
derivative of the first derivative, which can be represented as:

d2y

dx2
=

d

dx

[
dy

dx

]
.

Since dy
dx =

dy
dt
dx
dt

, we can replace y on both sides of this equation with dy
dx .

This substitution leads us to:

d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dt

(
dy
dx

)
dx
dt

.

If we know dy
dx as a function of t, then this formula is straightforward to

apply.
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Finding a Second Derivative

Calculate the second derivative d2y
dx2

for the plane curve defined by the
parametric equations x(t) = t2 − 3, y(t) = 2t − 1.
Solution:
Using (∗), we find that dy

dx = 2
2t = 1

t .
Applying (∗∗), we obtain

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

=
d
dt

(
1
t

)
2t

=
−t−2

2t
= − 1

2t3
.
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Calculating the Second Derivative

Calculate the second derivative d2y
dx2

for the plane curve defined by the
equations

x(t) = t3 + 2t, y(t) = 1− t + t2.

Solution:
Using the parametric equations, we first find the first derivative dy

dx using

the formula dy
dx =

dy
dt
dx
dt

.

The first derivatives are: dx
dt = 3t2 + 2, dy

dt = −1 + 2t.

So, the first derivative dy
dx is given by:

dy

dx
=

−1 + 2t

3t2 + 2
.

Next, to find the second derivative d2y
dx2

, we differentiate dy
dx with respect to

t and then divide by dx
dt :
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Part 2

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

.

Differentiating dy
dx , we get:

d

dt

(
dy

dx

)
=

d

dt

(
−1 + 2t

3t2 + 2

)
=

2(3t2 + 2)− 2(−1 + 2t)(6t)

(3t2 + 2)2
.

So, the second derivative d2y
dx2

is given by:

d2y

dx2
=

4 + 6t − 12t2

(3t2 + 2)3
.

Answer:
d2y

dx2
=

4 + 6t − 12t2

(3t2 + 2)3
.
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Examining Concavity of a Parametric Curve
Determine where the parametric curve x(t) = 4t − t2, y(t) = t3 + 2 is concave
upward and where it is concave downward.
Solution:
Applying (*), we find that dy

dx = 3t2

4−2t . Using (**), together with the quotient
rule, we obtain

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

=

(
3t2

4−2t

)′

4− 2t
=

6t(4−2t)−3t2(−2)
(4−2t)2

4− 2t
=

24t−6t2

(4−2t)3

4− 2t
.

We rewrite d2y
dx2 as

d2y

dx2
=

24t − 6t2

(4− 2t)3
=

6t(4− t)

(2(2− t))3
=

6t(4− t)

23(2− t)3
=

3t(4− t)

4(2− t)3
.

The numerator has zeros t = 0 and t = 4, while the denominator has a zero
t = 2 of multiplicity 3. Using sample points or any other appropriate method, we

find that d2y
dx2 > 0, and hence the parametric curve is concave upward, when

t ∈ (0, 2) and t ∈ (4,∞), and d2y
dx2 < 0, implying that the curve is concave

downward, when t ∈ (−∞, 0) and t ∈ (2, 4).
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Concavity of Parametric Curve

Determine where the parametric curve x(t) = t2 + 1, y(t) = t2 + t is
concave upward.

Answer: The curve is concave upward when t ∈ (−∞, 0).
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Finding the Area under a Parametric Curve

Now that we have seen how to calculate the derivative of a plane curve,
the next question is this: How do we find the area under a curve defined
parametrically?
Recall the cycloid defined by the equations

x(t) = t − sin(t), y(t) = 1− cos(t).
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Area under a Parametric Curve

Consider the plane curve defined by the parametric equations

x = x(t), y = y(t) ≥ 0, a ≤ t ≤ b

and assume that x(t) is differentiable.
If x(t) is increasing, then the area under this curve is given by

A =

b∫
a

y(t)
dx

dt
dt.

If x(t) is decreasing, then the area under this curve is given by

A =

a∫
b

y(t)
dx

dt
dt.
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Finding the Area under a Parametric Curve

Find the area under one arc of the cycloid defined by the equations

x(t) = t − sin(t), y(t) = 1− cos(t), 0 ≤ t ≤ 2π.

Solution: To determine whether x(t) is increasing or decreasing, we look at the
sign of x ′(t). We have that x ′(t) = 1− cos(t) ≥ 0, and hence x(t) is increasing.
Applying the above theorem, we have

A =

∫ b

a

y(t)
dx

dt
dt =

∫ 2π

0

(1− cos(t)) (1− cos(t)) dt

=

∫ 2π

0

(
1− 2 cos(t) + cos2(t)

)
dt =

∫ 2π

0

(
1− 2 cos(t) +

1 + cos(2t)

2

)
dt

=

∫ 2π

0

(
3

2
− 2 cos(t) +

cos(2t)

2

)
dt

=

(
3t

2
− 2 sin(t) +

sin(2t)

4

) ∣∣∣∣∣
2π

0

= 3π.
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Finding the Area under a Parametric Curve

Find the area under the upper half of the hypocycloid defined by the
equations

x(t) = 3 cos(t) + cos(3t), y(t) = 3 sin(t)− sin(3t), 0 ≤ t ≤ π.

Answer:
A = 3π

Hint: Use the above theorem, along with the identities

sin(α) sin(β) =
1

2
[cos(α− β)− cos(α+ β)]

and

sin2(t) =
1− cos(2t)

2
.

Note that x(t) is decreasing.
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Approximating the Arc Length of a Parametric Curve

The same way we did for a regular curve with explicit equation y = f (x) or
x = g(y), to derive a formula for the arc length of a parametric curve, we
approximate it by a union of line segments as shown in the figure above.
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Arc Length of a Parametric Curve

Consider the plane curve defined by the parametric equations

x = x(t), y = y(t), t1 ≤ t ≤ t2

and assume that x(t) and y(t) are smooth, that is, their derivatives dx
dt

and dy
dt are continuous. Then the arc length of this curve is given by

s =

∫ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt.
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Arc Length Formula for a Regular Curve: Proof

Now suppose that the parameter can be eliminated, leading to a function
y = F (x).

s =

∫ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ t2

t1

x ′(t)

√
1 +

(
dy

dx

)2

dt.

Here we have assumed that x ′(t) > 0, and the case when x ′(t) < 0 is
analogous (the extra minus is going to disappear when the limits of
integration are interchanged). Using a substitution x = x(t), we have that
dx = x ′(t) dt, and letting a = x(t1) and b = x(t2) we obtain the formula

s =

∫ b

a

√
1 +

(
dy

dx

)2

dx ,

which is exactly the one we had before.
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Finding the Arc Length of a Parametric Curve

Find the arc length of the semicircle defined by the equations

x(t) = 3 cos(t), y(t) = 3 sin(t), 0 ≤ t ≤ π.

Solution: The parametric curve is shown in Figure 9 below. To determine its
length, we use the formula:

s =

∫ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ π

0

√
(−3 sin(t))2 + (3 cos(t))2 dt

=

∫ π

0

√
9 sin2(t) + 9 cos2(t) dt

=

∫ π

0

√
9(sin2(t) + cos2(t)) dt

=

∫ π

0

3 dt = 3t

∣∣∣∣π
0

= 3π.
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Note on the Arc Length of a Semicircle

Note that the formula for the arc length of a semicircle is πr , and the
radius of this circle is 3. This is a great example of using calculus to derive
a known geometric formula.
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Finding the Arc Length of a Parametric Curve

Find the arc length of the curve defined by the equations

x(t) = 3t2, y(t) = 2t3, 1 ≤ t ≤ 3.

Answer:
s = 2

(
103/2 − 23/2

)
.
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Surface Area of a Surface of Revolution

Recall the problem of finding the surface area of a surface of revolution. In
Section 2.4, we derived a formula for the surface area of a surface
generated by revolving the curve y = f (x) ≥ 0 from x = a to x = b
around the x-axis:

S = 2π

∫ b

a
f (x)

√
1 + (f ′(x))2 dx .

We now consider a surface of revolution generated by revolving a
parametrically defined curve x = x(t), y = y(t), a ≤ t ≤ b around the
x-axis as shown in Figure 11 below.
The formula for its surface area is

S = 2π

∫ b

a
y(t)

√
(x ′(t))2 + (y ′(t))2 dt

provided that y(t) is non-negative on [a, b].
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Finding Surface Area of a Sphere

Find the surface area of a sphere of radius r centered at the origin.
Solution: We start by parametrizing the upper semicircle with center at the
origin and radius r :

x(t) = r cos(t), y(t) = r sin(t), 0 ≤ t ≤ π.

When this curve is revolved around the x-axis, it generates a sphere of radius r .
To calculate the surface area of the sphere, we use the formula:

S = 2π

∫ b

a

y(t)
√
(x ′(t))2 + (y ′(t))2 dt

= 2π

∫ π

0

r sin(t)
√
(−r sin(t))2 + (r cos(t))2 dt

= 2π

∫ π

0

r sin(t)

√
r2(sin2(t) + cos2(t)) dt = 2π

∫ π

0

r2 sin(t) dt

= 2πr2(− cos(t))

∣∣∣∣π
0

= 2πr2(− cos(π) + cos(0)) = 4πr2.

This agrees with the geometric formula you might have seen before.
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Finding the Area of the Surface of Revolution

Find the area of the surface generated by revolving the plane curve defined
by the equations

x(t) = t3, y(t) = t2, 0 ≤ t ≤ 1

around the x-axis.
Answer:

A =
π(494

√
13 + 128)

1215

Hint: When evaluating the integral, use a u-substitution.
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Key Concepts

The derivative of the parametrically defined curve x = x(t) and y = y(t)

can be calculated using the formula dy
dx = y ′(t)

x′(t) . Using the derivative, we can

find the equation of a tangent line to a parametric curve.

If y(t) ≥ 0, the area under the parametric curve can be determined by using

the formula A = ±
∫ b

a
y(t)x ′(t) dt, where the choice of sign depends on

whether x(t) is increasing or decreasing over [a, b].

The arc length of a parametric curve can be calculated by using the formula

s =
∫ b

a

√(
dx
dt

)2
+
(

dy
dt

)2

dt.

The area of a surface obtained by revolving a parametric curve around the

x-axis is given by S = 2π
∫ b

a
y(t)

√
(x ′(t))2 + (y ′(t))2 dt, provided y(t) ≥ 0

when t ∈ [a, b]. If the curve is revolved around the y-axis, then the formula

is S = 2π
∫ b

a
x(t)

√
(x ′(t))2 + (y ′(t))2 dt, provided x(t) ≥ 0 when t ∈ [a, b].
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Learning Objectives

Locate points in a plane using polar coordinates.

Convert points between rectangular and polar coordinates.

Sketch polar curves with given equations.

Convert equations between rectangular and polar coordinates.

Identify symmetry in polar curves and equations.
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Polar Coordinates

To find the coordinates of a point in the polar coordinate system, consider
the Figure below. The point P has Cartesian coordinates (x , y). Consider
the line segment connecting the origin to the point P. Its length is equal
to the distance from the origin to P and we denote it by r . We also
denote the angle between the positive x-axis and the line segment by θ.
Then (r , θ) are the polar coordinates of P.
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Converting Points between Coordinate Systems

Conversion Formulas

Given a point P in the plane with Cartesian coordinates (x , y) and polar
coordinates (r , θ), the following conversion formulas hold true:

(*) x = r cos(θ) and y = r sin(θ),

(**) r2 = x2 + y2 and tan(θ) = y
x .
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Quadrants
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Converting Rectangular to Polar Coordinates: Example 1

Convert the rectangular coordinates (1, 1) into polar coordinates:

Solution:

r2 = x2 + y2 = 12 + 12 = 2

r =
√
2

tan(θ) =
y

x
= 1

θ =
π

4

Therefore, the polar coordinates are
(√

2, π4
)
.
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Converting Rectangular to Polar Coordinates: Example 1

Convert the rectangular coordinates (1, 1) into polar coordinates:
Solution:

r2 = x2 + y2 = 12 + 12 = 2

r =
√
2

tan(θ) =
y

x
= 1

θ =
π

4

Therefore, the polar coordinates are
(√

2, π4
)
.
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Converting Rectangular to Polar Coordinates: Example 2

Convert the rectangular coordinates (−3, 4) into polar coordinates:

Solution:

r2 = x2 + y2 = (−3)2 + 42 = 25

r = 5

tan(θ) =
y

x
= −4

3

θ = π − arctan

(
4

3

)
Therefore, the polar coordinates are (5, π − arctan

(
4
3

)
).
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Converting Rectangular to Polar Coordinates: Example 2

Convert the rectangular coordinates (−3, 4) into polar coordinates:
Solution:

r2 = x2 + y2 = (−3)2 + 42 = 25

r = 5

tan(θ) =
y

x
= −4

3

θ = π − arctan

(
4

3

)
Therefore, the polar coordinates are (5, π − arctan

(
4
3

)
).
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Converting Rectangular to Polar Coordinates: Example 3

Convert the rectangular coordinates (0, 3) into polar coordinates:

Solution:

r = 3

θ =
π

2

Therefore, the polar coordinates are (3, π2 ).
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Converting Rectangular to Polar Coordinates: Example 3

Convert the rectangular coordinates (0, 3) into polar coordinates:
Solution:

r = 3

θ =
π

2

Therefore, the polar coordinates are (3, π2 ).

Math 1700 (University of Manitoba) 7.3 Polar Coordinates Winter 2024 9 / 41



Defining Polar Coordinates Polar Curves Symmetry in Polar Coordinates

Converting Rectangular to Polar Coordinates: Example 4

Convert the rectangular coordinates (5
√
3,−5) into polar

coordinates:

Solution:

r = 10

θ = −π

6

Therefore, the polar coordinates are (10,−π
6 ).
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Converting Rectangular to Polar Coordinates: Example 4

Convert the rectangular coordinates (5
√
3,−5) into polar

coordinates: Solution:

r = 10

θ = −π

6

Therefore, the polar coordinates are (10,−π
6 ).
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Converting Polar to Rectangular Coordinates: Example 1

Convert the polar coordinates
(
3, π3

)
into rectangular coordinates:

Solution:

x = r cos(θ) = 3 cos
(π
3

)
=

3

2

y = r sin(θ) = 3 sin
(π
3

)
=

3
√
3

2

Therefore, the rectangular coordinates are
(
3
2 ,

3
√
3

2

)
.
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Converting Polar to Rectangular Coordinates: Example 1

Convert the polar coordinates
(
3, π3

)
into rectangular coordinates:

Solution:

x = r cos(θ) = 3 cos
(π
3

)
=

3

2

y = r sin(θ) = 3 sin
(π
3

)
=

3
√
3

2

Therefore, the rectangular coordinates are
(
3
2 ,

3
√
3

2

)
.
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Converting Polar to Rectangular Coordinates: Example 2

Convert the polar coordinates
(
2, 3π2

)
into rectangular coordinates:

Solution:

x = 0

y = −2

Therefore, the rectangular coordinates are (0,−2).
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Converting Polar to Rectangular Coordinates: Example 2

Convert the polar coordinates
(
2, 3π2

)
into rectangular coordinates:

Solution:

x = 0

y = −2

Therefore, the rectangular coordinates are (0,−2).
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Converting Polar to Rectangular Coordinates: Example 3

Convert the polar coordinates
(
6,−5π

6

)
into rectangular coordinates:

Solution:

x = −3
√
3

y = −3

Therefore, the rectangular coordinates are (−3
√
3,−3).
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Converting Polar to Rectangular Coordinates: Example 3

Convert the polar coordinates
(
6,−5π

6

)
into rectangular coordinates:

Solution:

x = −3
√
3

y = −3

Therefore, the rectangular coordinates are (−3
√
3,−3).
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Converting Rectangular to Polar Coordinates

Convert the rectangular coordinates (−8,−8) into polar coordinates:

Solution:

r2 = x2 + y2 = (−8)2 + (−8)2 = 128

r =
√
128 = 8

√
2

tan(θ) =
y

x
=

−8

−8
= 1

θ = tan−1(1)− π (since in the third quadrant)

Therefore, the polar coordinates are
(
8
√
2,−3π

4

)
.
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√
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Converting Polar to Rectangular Coordinates

Convert the polar coordinates
(
4, 2π3

)
into rectangular coordinates:

Solution:

x = r cos(θ) = 4 cos

(
2π

3

)
= 4×

(
−1

2

)
= −2

y = r sin(θ) = 4 sin

(
2π

3

)
= 4×

√
3

2
= 2

√
3

Therefore, the rectangular coordinates are
(
−2, 2

√
3
)
.
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Non-Uniqueness of Polar Representation

Example: The point
(
1,
√
3
)
in the rectangular system has multiple polar

representations.
For instance: (

2,
π

3

)
and

(
2,

7π

3

)

both represent the same point.
Solution: Both polar representations correspond to the same point in the
rectangular system.
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Usage of Negative Radius in Polar Coordinates

Example: The point
(
1,
√
3
)
in the rectangular system can also be

represented using negative radius in polar coordinates.
For instance: (

−2,
4π

3

)
Solution: Using the conversion formulas:

x = r cos(θ) = −2 cos

(
4π

3

)
= 1

y = r sin(θ) = −2 sin

(
4π

3

)
=

√
3

Therefore,
(
−2, 4π3

)
represents the point

(
1,
√
3
)
.
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Important

Geometrically, when we plot a point with a negative radial coordinate, we
measure the distance of |r | along the halfline that is in the opposite
direction to the one that makes the angle of θ with the positive x-axis, so
basically the minus reverses the direction, the same way as with angles.)

Infinite number of polar coordinates

Every point in the plane has an infinite number of representations in polar
coordinates. However, each point in the plane has only one representation
in the rectangular coordinate system.
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Polar Coordinate System

r is the directed distance that the point lies from the origin and θ measures
the angle that the line segment from the origin to the point makes with the
positive x-axis.

Positive angles are measured in a counterclockwise direction, and negative
angles are measured in a clockwise direction.
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Plotting Points on Polar Plane
Solution

Plot each of the following points on the polar plane:

(2, π4 ), (−3, 2π3 ) and (4, 5π4 )
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Plotting Points on the Polar Plane

Plot the points
(
4, 5π3

)
and

(
−3,−7π

2

)
on the polar plane.

Solution: The points are plotted in the following figure.
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Plotting Curves in the Polar Coordinate System

Now that we know how to plot points in the polar coordinate system, let’s
discuss how to plot curves.
In the rectangular coordinate system, we can graph a function y = f (x)
and create a curve in the Cartesian plane. Similarly, in the polar coordinate
system, we can graph a curve that is generated by a function r = f (θ).

In this context, r represents the distance from the origin to a point on
the curve, and θ represents the angle that the line segment from the
origin to that point makes with the positive x-axis.

To plot a curve given by r = f (θ), we evaluate r for various values of
θ, and then plot the corresponding points in the polar plane.

Connecting these points with smooth lines or curves gives us the
graph of the polar function.

We’ll explore this concept further with examples in the upcoming slides.
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Problem-Solving Strategy: Plotting a Curve in Polar
Coordinates

To plot a curve in polar coordinates, follow these steps:

Five Steps

1 Create a table with two columns. The first column is for θ, and the
second column is for r .

2 Create a list of values for θ.

3 Calculate the corresponding r values for each θ.

4 Plot each ordered pair (r , θ) on the coordinate axes.

5 Connect the points and look for a pattern.

This strategy helps in visualizing and understanding the behavior of curves
in the polar coordinate system.
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Graphing a Function in Polar Coordinates

Graph the curve defined by the function r = 4 sin(θ). Identify the curve
and rewrite the equation in rectangular coordinates.
Solution: Because the function is a multiple of a sine function, it is
periodic with period 2π. We will use values for θ between 0 and 2π. The
result of steps 1–3 appear in the following table:

θ r = 4 sin(θ) θ r = 4 sin(θ)

0 0 π 0
π
6 2 7π

6 −2
π
4 2

√
2 ≈ 2.8 5π

4 −2
√
2 ≈ −2.8

π
3 2

√
3 ≈ 3.4 4π

3 −2
√
3 ≈ −3.4

π
2 4 3π

2 4
2π
3 2

√
3 ≈ 3.4 5π

3 −2
√
3 ≈ −3.4

3π
4 2

√
2 ≈ 2.8 7π

4 −2
√
2 ≈ −2.8

5π
6 2 11π

6 −2
2π 0
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Graph and center

This is the graph of a circle. The equation r = 4 sin(θ) can be converted into
rectangular coordinates by first multiplying both sides by r . This gives the
equation r2 = 4r sin(θ). Next, we use the facts that r2 = x2 + y2 and
y = r sin(θ). This gives x2 + y2 = 4y . To put this equation into standard form,
we subtract 4y from both sides of the equation and complete the square:

x2 + y2 − 4y = 0
x2 + (y2 − 4y) = 0

x2 + (y2 − 4y + 4) = 0 + 4
x2 + (y − 2)2 = 4.

This is the equation of a circle with radius 2 and center (0, 2) in the rectangular
coordinate system.
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Graph of r = 4 + 4 cos(θ)

Hint: Follow the problem-solving strategy for creating a graph in polar
coordinates.

Solution:

The name of this shape is a cardioid, which we will study further later in
this section.
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Graph of r = 4 + 4 cos(θ)

Hint: Follow the problem-solving strategy for creating a graph in polar
coordinates.
Solution:

The name of this shape is a cardioid, which we will study further later in
this section.
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Transforming Polar Equations to Rectangular Coordinates

Example 1: Rewrite θ = π
3 in rectangular coordinates and identify the

graph.
Solution: Take the tangent of both sides. This gives
tan(θ) = tan(π3 ) =

√
3. Since tan(θ) = y

x , we can replace the left-hand

side with y
x , resulting in y

x =
√
3. This equation represents a straight line

passing through the origin with slope
√
3. Therefore, the graph represents

a line passing through the origin with a slope of
√
3. In general, any polar

equation of the form θ = K represents a straight line through the pole
with slope equal to tan(K ).
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Transforming Polar Equations to Rectangular Coordinates

Example 2: Rewrite r = 3 in rectangular coordinates and identify the
graph.
Solution: First, square both sides of the equation. This gives r2 = 9.
Next, replace r2 with x2 + y2, resulting in x2 + y2 = 9, which is the
equation of a circle centered at the origin with radius 3.
In general, any polar equation of the form r = k , where k is a constant,
represents a circle of radius |k| centered at the origin. (Note: when
squaring both sides of an equation, it is possible to introduce new points
unintentionally. This should always be taken into consideration. However,
in this case, we do not introduce new points. For example, (−3, π3 ) is the
same point as (3, 4π3 ).)
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Transforming Polar Equations to Rectangular Coordinates

Example 3: Rewrite r = 6 cos(θ)− 8 sin(θ) in rectangular coordinates and
identify the graph.
Solution: Multiplying both sides by r gives r2 = 6r cos(θ)− 8r sin(θ).
Substituting x = r cos(θ) and y = r sin(θ), we get x2 + y2 = 6x − 8y .
Completing the square yields (x − 3)2 + (y + 4)2 = 25, which is the
equation of a circle with center at (3,−4) and radius 5. Notice that the
circle passes through the origin since the center is 5 units away.
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Rewriting Polar Equation in Rectangular Coordinates

To rewrite the given polar equation r = sec(θ) tan(θ) in rectangular coordinates.

Solution:
The trigonometric identities we’ll use are:

sec(θ) =
1

cos(θ)
, tan(θ) =

sin(θ)

cos(θ)

Substituting these identities into the equation r = sec(θ) tan(θ), we get:

r =
1

cos(θ)
· sin(θ)
cos(θ)

Now, let’s express r in terms of x and y . Since x = r cos(θ) and y = r sin(θ), we
have:

r2 = x2 + y2

Therefore, our equation becomes: x2 + y2 = y
x

Multiplying both sides by x to clear the fraction, we obtain:

x3 + xy2 = y

This equation represents a curve in rectangular coordinates. Specifically, it’s the
equation of a parabola opening upward, given by y = x2.
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Summary of Common Curves Defined by Polar Equations

Polar Equation Description
θ = K Line

r = a cos θ + b sin θ Circle
r = a sin(θ) Circle with radius a centered on x-axis
r = a cos(θ) Circle with radius a centered on y -axis
r = a+ bθ Spiral

r = a± b sin(θ) Cardioid if a = b
r = a± b cos(θ) Cardioid if a = b
r = a+ b sin(θ) Limaçon with a loops if b > a
r = a+ b cos(θ) Limaçon with a loops if b > a
r = a sin(2θ) Rose with a petals
r = a cos(2θ) Rose with a petals
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Figures
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Cardioid and Rose Curves

Cardioid:

A cardioid is a special case of a
limaçon where a = b or a = −b.

Rose Curve:

The graph of r = 3 sin(2θ) has
four petals.

The graph of r = 3 sin(3θ) has
three petals.

If the coefficient is irrational,
then the curve never closes,
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Calculus with Polar Curves

Find the slope of the tangent line to the spiral with polar equation
r = π − θ at the point corresponding to θ = 2π

3 .
Solution:

x = r cos(θ) = (π − θ) cos(θ)

y = r sin(θ) = (π − θ) sin(θ)

Next, find dy
dx as a function of θ:

dy

dx
=

dy/dθ

dx/dθ

=
d
dθ

(
(π − θ) sin(θ)

)
d
dθ

(
(π − θ) cos(θ)

)
=

− sin(θ) + (π − θ) cos(θ)

− cos(θ) + (π − θ)(− sin(θ))
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Part 2

The slope m of the tangent line at θ = 2π
3 is:

m =
dy

dx

(
2π

3

)
=

− sin
(
2π
3

)
+
(
π − 2π

3

)
cos

(
2π
3

)
− cos

(
2π
3

)
+

(
π − 2π

3

) (
− sin

(
2π
3

))
=

−
√
3
2 + π

3 ·
(
−1

2

)
−
(
−1

2

)
+ π

3 ·
(
−

√
3
2

)
=

3
√
3 + π

−3 +
√
3π
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Calculus with Polar Curves

Find the slope of the tangent line to the polar curve r = 1 + sin(θ) at the
point corresponding to θ = −π

4 .
Solution: To find the slope of the tangent line, we first need to find the
derivative of r with respect to θ, denoted as dr

dθ .
Given the polar equation r = 1 + sin(θ), we differentiate it with respect to
θ using the chain rule:

dr

dθ
=

d

dθ
(1 + sin(θ)) = cos(θ)

Now, evaluate dr
dθ at θ = −π

4 :

dr

dθ

∣∣∣∣
θ=−π

4

= cos
(
−π

4

)
=

1√
2

The slope of the tangent line at θ = −π
4 is the negative reciprocal of dr

dθ :

Slope = − 1
1√
2

= −
√
2 + 1

Therefore, the slope is 1−
√
2.
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Symmetry in Polar Curves and Equations

Consider a polar curve with equation r = f (θ).

The curve is symmetric about the polar axis if for every point (r , θ)
on the graph, the point (r ,−θ) is also on the graph. This happens if
f (−θ) = f (θ) or f (π − θ) = −f (θ).

The curve is symmetric about the pole if for every point (r , θ) on the
graph, the point (r , π + θ) is also on the graph. This happens if
f (π + θ) = f (θ).

The curve is symmetric about the vertical line θ = π
2 if for every point

(r , θ) on the graph, the point (r , π − θ) is also on the graph. This
happens if f (π − θ) = f (θ) or f (−θ) = −f (θ).
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Examples of each type of symmetry
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Using Symmetry to Graph a Polar Equation

Determine all symmetries of the rose

The rose is defined by the equation r = 3 sin(2θ).

Solution

Suppose the point (r , θ) is on the graph of r = 3 sin(2θ). Let
f (θ) = 3 sin(2θ). We first substitute −θ instead of θ into f :

f (−θ) = 3 sin(−2θ) = −3 sin(2θ) = −f (θ)

since sine is an odd function. According to iii in the statement above, this
implies symmetry with respect to the vertical line θ = π

2 .
To test for symmetry with respect to the polar axis, we consider f (π − θ):

f (π − θ) = 3 sin(2π − 2θ) = 3 sin(−2θ) = −3 sin(2θ)

since sine function is 2π-periodic and odd. Hence, by i, we have that the
curve is symmetric with respect to the polar axis as well.
Geometrically, the above two symmetries automatically imply symmetry
with respect to the pole, but this can also be verified analytically by
checking that f (π + θ) = f (θ).
So this graph has symmetry with respect to the vertical line going through
the pole, the polar axis, and the origin. To sketch the curve, tabulate
values of θ between 0 and π

2 and then reflect the resulting graph about the
polar axis and the line θ = π

2 .
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Graphs : Reflecting into the other three quadrants

Table of Values
θ r
0 0
π
6

3
√
3

2 ≈ 2.6
π
4 3
π
3

3
√
3

2 ≈ 2.6
π
2 0
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Key Concepts

The polar coordinate system provides an alternative way to locate
points in the plane.

Convert points between rectangular and polar coordinates using the
formulas:

x = r cos(θ)

y = r sin(θ)

r =
√

x2 + y2

tan(θ) =
y

x
To sketch a polar curve, make a table of values and take advantage of
periodic properties.

Use the conversion formulas to convert equations between rectangular
and polar coordinates.

Identify symmetry in polar curves, which can occur through the pole,
the horizontal axis, or the vertical axis.
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Outline

1 Areas of Regions Bounded by Polar Curves

2 Arc Length for Polar Curves
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Learning Objectives

Derive the formula for the area of a region in polar coordinates.

Determine the arc length of a polar curve.
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Area and Arc Length in Polar Coordinates

In the rectangular coordinate system, the definite integral provides a way to
calculate the area under a curve. In particular, if we have a function y = f (x)
defined from x = a to x = b where f (x) > 0 on this interval,

Area between the curve and the x-axis
The area between the curve and the x-axis is given by

A =

b∫
a

f (x) dx .

Arc length of this curve

We can also find the arc length of this curve using the formula

L =

b∫
a

√
1 + (f ′(x))2 dx .

Polar Coordinate System

In this section, we study formulas for area and arc length in the polar coordinate
system.
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Area Bounded by a Polar Curve

Consider a polar curve defined by the function r = f (θ), where α ≤ θ ≤ β.
Our first step is to partition the interval [α, β] into n equal-width subintervals.

Thus ∆θ = (β−α)
n , and the ith partition point θi = α+ i∆θ. Each partition point

θ = θi defines a line with slope tan(θi ) passing through the pole as shown in the
following graph.

The area of a sector of a circle with angle θi can be given as:

Ai =
1

2
(∆θ) (f (θi ))

2 =
1

2
(f (θi ))

2∆θ.
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Exact Area Calculation

Summing the areas of sectors for 1 ≤ i ≤ n, we obtain a Riemann sum
that approximates the polar area:

A ≈
n∑

i=1

Ai =
n∑

i=1

1

2
(f (θi ))

2∆θ.

We take the limit as n → ∞ to get the exact area:

A = lim
n→∞

n∑
i=1

1

2
(f (θi ))

2∆θ =
1

2

∫ β

α
(f (θ))2 dθ.
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Area of a Region Bounded by a Polar Curve

Formula

Suppose f is continuous and nonnegative on the interval α ≤ θ ≤ β with
0 < β − α ≤ 2π. The area of the region bounded by the graph of r = f (θ)
between the radial lines θ = α and θ = β is:

(∗) A =
1

2

∫ β

α
[f (θ)]2 dθ =

1

2

∫ β

α
r2 dθ.

Example: Finding the Area of a Polar Region

Find the area of one petal of the rose defined by the equation
r = 3 sin(2θ).
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Graph

The graph of r = 3 sin(2θ) is shown below.
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Finding the Area Inside the Petal: Solution

It follows that the petal in the first quadrant corresponds to θ ∈
[
0, π2

]
. To

find the area inside this petal, use (*) from the above theorem with
f (θ) = 3 sin(2θ), α = 0, and β = π

2 :

A =
1

2

∫ β

α
[f (θ)]2dθ =

1

2

∫ π
2

0
[3 sin(2θ)]2dθ =

1

2

∫ π
2

0
9 sin2(2θ)dθ.

To evaluate this integral, use the formula sin2(α) = 1−cos(2α)
2 with α = 2θ:

A =
1

2

∫ π
2

0
9 sin2(2θ)dθ =

9

2

∫ π
2

0

1− cos(4θ)

2
dθ =

9

4

∫ π
2

0
(1− cos(4θ))dθ

=
9

4

(
θ − sin(4θ)

4

) ∣∣∣∣∣
π
2

0

=
9

4

(
π

2
− sin(2π)

4

)
− 9

4

(
0− sin(0)

4

)
=

9π

8
.
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Finding the Area Inside the Cardioid

Problem: Find the area inside the cardioid defined by the equation
r = 1− cos(θ).
Answer: A = 3π

2 .
Hint: Use (*). Be sure to determine the correct limits of integration
before evaluating.
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Finding the Area between Two Polar Curves

Problem: Find the area outside the cardioid r = 2 + 2 sin(θ) and inside the circle
r = 6 sin(θ).
Solution: First draw a graph containing both curves as shown below.

6 sin(θ) = 2 + 2 sin(θ) ⇒ 4 sin(θ) = 2 ⇒ sin(θ) =
1

2
.

Then θ = π
6 and θ = 5π

6 in the interval (−π, π], which are the limits of integration
since from the picture we see that 6 sin(θ) ≥ 2 + 2 sin(θ) on

[
π
6 ,

5π
6

]
. The circle

r = 6 sin(θ) is the red graph, which is the outer function, and the cardioid
r = 2 + 2 sin(θ) is the blue graph, which is the inner function. To calculate the
area between the curves, start with the area inside the circle between θ = π

6 and
θ = 5π

6 , then subtract the area inside the cardioid between θ = π
6 and θ = 5π

6 :
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Part 2

A = circle− cardioid

=
1

2

∫ 5π
6

π
6

[6 sin(θ)]2dθ − 1

2

∫ 5π
6

π
6

[2 + 2 sin(θ)]2dθ

=
1

2

∫ 5π
6

π
6

36 sin2(θ)dθ − 1

2

∫ 5π
6

π
6

(4 + 8 sin(θ) + 4 sin2(θ))dθ

= 18

∫ 5π
6

π
6

1− cos(2θ)

2
dθ − 2

∫ 5π
6

π
6

(1 + 2 sin(θ) +
1− cos(2θ)

2
)dθ

= 9

(
θ − sin(2θ)

2

) ∣∣∣∣∣
5π
6

π
6

− 2

(
3θ

2
− 2 cos(θ)− sin(2θ)

4

) ∣∣∣∣∣
5π
6

π
6

= 9

(
5π

6
−

sin
(
5π
3

)
2

)
− 9

(
π

6
−

sin
(
π
3

)
2

)

−

(
3

(
5π

6

)
− 4 cos

5π

6
−

sin
(
5π
3

)
2

)
+

(
3
(π
6

)
− 4 cos

π

6
−

sin
(
π
3

)
2

)
= 4π.
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Finding the Area Inside and Outside Circles

Problem: Find the area inside the circle r = 4 cos(θ) and outside the
circle r = 2.
Answer: A = 4π

3 + 2
√
3.

Hint: Use (*) and take advantage of symmetry.
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Arc Length of a Curve in Polar Coordinates

Here we derive a formula for the arc length of a curve defined in polar
coordinates. In rectangular coordinates, the arc length of a parameterized
curve (x(t), y(t)) for a ≤ t ≤ b is given by

L =

b∫
a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

In polar coordinates we define the curve by the equation r = f (θ), where
α ≤ θ ≤ β. In order to adapt the arc length formula for a polar curve, we
use the equations

x = r cos(θ) = f (θ) cos(θ) and y = r sin(θ) = f (θ) sin(θ).

Differentiating, we obtain
dx
dθ = f ′(θ) cos(θ)− f (θ) sin(θ)

dy
dθ = f ′(θ) sin(θ) + f (θ) cos(θ).
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Second part

Applying the known arc length formula, we get

L =

β∫
α

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ

=

β∫
α

√(
f ′(θ) cos(θ)− f (θ) sin(θ)

)2
+
(
f ′(θ) sin(θ) + f (θ) cos(θ)

)2
dθ

=

β∫
α

√
(f ′(θ))2

(
cos2(θ) + sin2(θ)

)
+ (f (θ))2

(
cos2(θ) + sin2(θ)

)
dθ

=

β∫
α

√
(f ′(θ))2 + (f (θ))2dθ =

β∫
α

√
r2 +

(
dr

dθ

)2

dθ.
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Arc Length of a Curve Defined by a Polar Function

Let f be a function whose derivative is continuous on an interval
α ≤ θ ≤ β. The length of the polar curve r = f (θ) from θ = α to θ = β is

Formula

L =

∫ β

α

√
[f (θ)]2 + [f ′(θ)]2 dθ =

∫ β

α

√
r2 +

(
dr

dθ

)2

dθ.
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Finding the Arc Length of a Polar Curve

Problem: Find the arc length of the cardioid r = 2 + 2 cos(θ).
Solution:

L =

∫ π

−π

√
[2 + 2 cos(θ)]2 + [−2 sin(θ)]2 dθ

=

∫ π

−π

√
4 + 8 cos(θ) + 4 cos2(θ) + 4 sin2(θ) dθ

=

∫ π

−π

√
8 + 8 cos(θ) dθ

= 2

∫ π

−π

√
2 + 2 cos(θ) dθ = 2

∫ π

−π

√
4 cos2

(
θ

2

)
dθ

= 2

∫ π

−π
2

∣∣∣∣cos(θ

2

)∣∣∣∣ dθ = 4

∫ π

−π
cos

(
θ

2

)
dθ = 4

(
2 sin

(
θ

2

)) ∣∣∣∣∣
π

−π

= 8(1− (−1)) = 16.
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Finding the Arc Length of r = 3 sin(θ)

Problem: Find the total arc length of r = 3 sin(θ).
Answer: 3π
Hint To determine the correct limits, make a table of values.
Solution: To determine the correct limits, make a table of values for θ
and r , then observe the behavior of r as θ varies.

θ r

0 0
π/2 3
π 0

3π/2 −3
2π 0

As θ goes from 0 to 2π, the curve traces out a single wave of the sine
function from r = 0 to r = 3 and back to r = 0. Hence, the total arc
length is s = 3π.
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Key Concepts

The area of the region bounded by the polar curve r = f (θ) and
between the radial lines θ = α and θ = β is given by the integral

A =
1

2

β∫
α

[f (θ)]2 dθ.

To find the area between two curves in the polar coordinate system,
first find the points of intersection, then subtract the corresponding
areas.

The arc length of a polar curve defined by the equation r = f (θ) with
α ≤ θ ≤ β is given by the integral

L =

β∫
α

√
[f (θ)]2 +

[
df

dθ

]2
dθ =

β∫
α

√
r2 +

(
dr

dθ

)2

dθ.
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Areas of Regions Bounded by Polar Curves Arc Length for Polar Curves

Key Equations

Area of a region bounded by a polar curve:

A =
1

2

β∫
α

[f (θ)]2 dθ =
1

2

β∫
α

r2 dθ

Arc length of a polar curve:

L =

β∫
α

√
[f (θ)]2 +

[
df

dθ

]2
dθ =

β∫
α

√
r2 +

(
dr

dθ

)2

dθ
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