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Learning Objectives

@ Plot a curve described by parametric equations.
e Convert the parametric equations of a curve into the form y = f(x).
@ Recognize the parametric equations of basic curves, such as a line and

a circle.

@ Recognize the parametric equations of a cycloid.
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Parametric Equations and Their Graphs
©00000

Definition

If x and y are continuous functions of t on an interval /, then the
equations

x=x(t) and y=y(t) J

are called parametric equations and t is called the parameter. The set of
points (x, y) obtained as t varies over the interval / is called the graph of
the parametric equations. The graph of parametric equations is also called
a parametric curve or plane curve, and is denoted by C.
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Parametric Equations and Their Graphs
000000

Graphing Parametrically Defined Curves

1Ist: 2nd: 3rd:
x(t)=t—-1 x(t)=t" -3 x(t) =4cost
y(t)=2t+4 y(t)y=2t+1 y(t) =4sint
3<t<2 2<t<3 0<t<2nm
y y y
G

x®

/ G
774;( \ X
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[o]e] lele]e]
Example 1

Sketch the curves described by the following parametric equations:
x(t)=t—1, y(t)=2t+4, -3<t<2

To create a graph of this curve, first set up a table of values. Since the

independent variable in both x(t) and y(t) is t, let t appear in the first
column.

t [ x(0) [0
-3 —4 -2
-2 =3 0
-1 =2 2
0 -1 4
1 0 6
2 1 8
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Parametric Equations and Their Graphs
00@000

Example 1

Sketch the curves described by the following parametric equations:

x(t)=t—1, y(t)=2t+4, -3<t<2

To create a graph of this curve, first set up a table of values. Since the
independent variable in both x(t) and y(t) is t, let t appear in the first

o> N o o<

N oW s

e

xt)=t-1
yo) =2t+4
-3=t=2

column.

t | x(t) | y(t)
-3 -4 | =2
-2 -3 0
-1] =2 2

0 -1 4 o

1 0 6 N A
2 1 8 / !

t=-3

-1

-3

1 2 3 4 5 6%

The arrows on the graph indicate the orientation of the graph, that is, the direction that a point moves on the graph as t varies

from -3 to 2.
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Example 2

Sketch the curves described by the following parametric equations:

x(t) =12 -3, y(t) =2t +1, —2<t <3

t | x(t) | y(t)
2 1 [ -3
1| 2| -1
0] 3] 1
1| -2 3
21 1| 5
316 | 7
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Parametric Equations and Their Graphs
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Example 2

Sketch the curves described by the following parametric equations:

x(t) =12 -3, y(t) =2t +1, —2<t <3

xt)=-3

t | x(t) | y(t) Lfenl

Hmw»mm«
\
w

As t progresses from -2 to 3, the point on the curve travels along a parabola. The direction the point moves is again called the
orientation and is indicated on the graph.
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Parametric Equations and Their Graphs
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Example 3

Sketch the curves described by the following parametric equations:

x(t) =4cost, y(t)=4sint, 0 < t <27

t x(t) y(t) t x(t) y(t)

0 4 0 | —2v3~-35 2

| 2V/3=35 2 2 =z —2v/3~ -3.5
z 2 2V3~35| ¥ 0 —4

z 0 4 7 2 —2v/3~ -35
Z —2 2v3~35 | 5| 2v/3~35 2

2 | —2y3~-35 2 27 4 0

m —4 0
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Parametric Equations and Their Graphs
000000

Example 3

Sketch the curves described by the following parametric equations:

x(t) =4cost, y(t)=4sint, 0 < t <27

y
t x(t) y(t) t ool == )
O 4 O 7% 0=t=27
| 2V/3=35 2 2 235
z 2 2V/3~35| 3¢ ok
x 0 4 1 fsh 35
e —2 2V3~3.5
% | -2v/3~-35 2
T —4 0 ) =3

This is the graph of a circle with radius 4 centered at the origin, with a counterclockwise orientation. The starting point and
ending point of the curve both have coordinates (4, 0).
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Parametric Equations and Their Graphs
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Sketching the Curve

Sketch the curve described by the parametric equations:
x(t)=3t+2, y(t)=t"—-1, -3<t<2

y

g8+

t=-3

7.
61 Xx(t)=3t+ 2

yty=t2—-1
ST -3=t=2

-8 -7 -6 -5 -4 -3 -2 —N 1 2 3 5 6 7 8%
71‘

-2+
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Eliminating the Parameter
Clelelelolele)

Rewriting Parametric Equations

To better understand the graph of a curve represented parametrically, it is
useful to rewrite the two equations as a single equation relating the
variables x and y. For example, consider the parametric equations:

x(t)=t>=3, y(t)=2t+1, —-2<t<3
Solving the second equation for t gives:

y—1
2
This can be substituted into the first equation:

—1\? 2_oy4+1
X:<y2 ) L, P2y +])

t =

2
—2y—11
Y-yl
4 4

This equation describes x as a function of y.
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Eliminating the Parameter
0@00000

Eliminating the Parameter: Example 1

Eliminate the parameter for each of the plane curves described by the following
parametric equations and describe the resulting graph:

x(t)=V2t+4, y(t)=2t+1, -2<t<6

Solution: To eliminate the parameter, we can solve either of the equations for t.
For example, solving the first equation for t gives:

2

—4
x:Vh+4¢t:X2

Note that when we square both sides, it is important to observe that x > 0.
. 2_y4 . .
Substituting t = X5 into y(t) yields:

x? —4

y(t)—2t+1—2( >+1—X24+1—X23
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Eliminating the Parameter
0000000

Part 2 example 1

y = x2 — 3, this is the equation of a parabola opening upward. There is,
however, a domain restriction because of the limits on the parameter t.
When t = =2, x = \/2(—2) +4 =0, and when t = 6,

x = 4/2(6) + 4 = 4. The graph of this plane curve follows.

y
141

2T ooy =vat+ 4

10+ ¥it)y=2t+1
-2=t=6
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Eliminating the Parameter Creatively

Sometimes it is necessary to be a bit creative in eliminating the parameter.
x(t) =4cos(t) and y(t)=3sin(t).

Solving either equation for t directly is not advisable because sine and cosine are
not one-to-one functions.

cos(t) = and sin(t) = %

NN X

Using the Pythagorean identity cos?(t) + sin®(t) = 1 , we obtain:

QRO

This is the equation of a horizontal ellipse centered at the origin, with semimajor
axis 4 and semiminor axis 3. wo—dcost 5

y(o) =3sint 4
0=t=27 =2

2
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Eliminating the Parameter

To eliminate the parameter for the plane curve defined by the parametric
equations:

3
x(t):2+;, y(t)=t—1, 2<t<6
We can express t in terms of x and y: x =2+ % = t= % Then substitute
t into the equation for y:
3 3
y x—2 y + x—2
So, we have x =2 + y—f’rl ory=—-1+ % This equation describes a portion of

a rectangular hyperbola centered at (2, —1).

t=6
x(r):2+%

yy=t-1
2=t=6

[ T T -

t=2

e
-1 0 1 2 3 4 5%
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Parameterizing a Curve
Find two different pairs of parametric equations to represent the graph of
y =2x% -3
© First Parametric Equations:
x(t)=t, y(t)=2t>—-3

Since there is no restriction on the domain in the original graph, there is no
restriction on the values of t.

@ Second Parametric Equations:
x(t) =3t —2, y(t)=18t>—24t +6

We have complete freedom in the choice for the second parameterization.
We can choose x(t) = 3t — 2 since there are no restrictions imposed on x,
and then substitute it into the equation y = 2x? — 3.

Therefore, the second parameterization of the curve can be written as:
x(t)=3t—2, y(t)=18t>—-24t+6
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Eliminating the Parameter
0000000

Parameterizing a Curve

Find two different sets of parametric equations to represent the
graph of y = x? + 2x:

© First Parametric Equations:
x(t)=t, y(t)=1t>+2t
@ Second Parametric Equations:
x(t) =2t =3, y(t)= (2t —3)* +2(2t —3) = 4t> — 8t + 3

There are, in fact, an infinite number of possibilities.
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Cycloids and Other Parametric Curves
90000

The Cycloid: Nature's Artistry

@ Imagine embarking on a tranquil
bicycle ride through the
countryside, where every
rotation of the tire leaves a
rhythmic mark on the road.

o Picture a determined ant
seeking its way home after a
long day's journey, hitchhiking
along the tire's edge for a free
ride.

@ The path traced by this intrepid
ant on a straight road is what
we call a cycloid.
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ric Equations and Their Graphs the Parameter Cycloids and Other Parametric Curves

0@000

The Cycloid: Parameterizing

Parametric equations

A cycloid generated by a circle (or bicycle wheel) of radius a is given by the
parametric equations

x(t) = a(t —sint), y(t)=a(l— cost)

If the radius is a, then the coordinates of the center can be given by the equations

x(t) = at, y(t)=a

A possible parameterization of the circular motion of the ant (relative to the
center of the wheel) is given by

x(t) = —asint, y(t) = —acost

Adding these equations together gives the equations for the cycloid.
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Cycloids and Other Parametric Curves
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The hypocycloid.: Large wheel

Visualizing

Suppose that the bicycle wheel doesn’t travel along a straight road but instead
moves along the inside of a larger wheel, as in Figure. A point on the edge of the
green circle traces out the red graph, which is called a hypocycloid.

2
7
6
5l X0 =3cost+cos3t

Y() = 3sint — sin 3¢

-7 -6 -5 —4 &2 -1 O 1 2 b5 o6 7%
1
2
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The hypocycloid.: Large wheel

Visualizing

Suppose that the bicycle wheel doesn’t travel along a straight road but instead
moves along the inside of a larger wheel, as in Figure. A point on the edge of the
green circle traces out the red graph, which is called a hypocycloid.

2
7
6
5l X0 =3cost+cos3t

Y() = 3sint — sin 3¢

N7

The general parametric equations for a hypocycloid are:

- b
x(t) = (a— b)cost + bcos <abt>

y(t) = (a— b)sint — bsin (a_bbt>
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Cycloids and Other Parametric Curves
00000

Examples Hypocycloid

The period of the second trigonometric function in both x (t) and y (t) is
equal to f%g. The ratio jis related to the number of cusps (corners or
pointed ends) on the graph, as illustrated in the following Figure

:
53

a
-4

Math 1700 (University of Manitoba)
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Cycloids and Other Parametric Curves
00000

Key Concepts: Parametric Equations

@ Parametric equations provide a convenient way to describe a curve. A
parameter can represent time or some other meaningful quantity.

@ It is often possible to eliminate the parameter in a parameterized
curve to obtain a function or relation describing that curve.

@ There is always more than one way to parameterize a curve.

@ Parametric equations can describe complicated curves that are
difficult or perhaps impossible to describe using rectangular
coordinates.
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Outline

@ Derivatives of Parametric Equations
© Second-Order Derivatives

© Integrals Involving PE

@ Arc Length of a PC

© Surface Area Generated by a PC
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Learning Objectives

@ Determine derivatives and equations of tangents for parametric
curves.

Find the area under a parametric curve.

Determine the arc length of a parametric curve.

© 00

Apply the formula for the surface area of the surface generated by
revolving a parametric curve about the x-axis or the y-axis.
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Challenge

Challenge

Now that we have introduced the concept of a parameterized curve, our
next step is to learn how to work with this concept in the context of
calculus. For example, if we know a parameterization of a given curve, is it
possible to calculate the slope of a tangent line to the curve? How about
the arc length of the curve? Or the area under the curve?
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Derivatives of Parametric Equations
©0000000000

Derivative of Parametric Equations

Consider the plane curve defined by the parametric equations x = x(t) and

y = y(t). Suppose that x’(t) and y/(t) exist, and assume that x/(t) # 0.
Then the derivative % is given by

dy %y
o) o
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Derivative of Parametric Equations: Example
Let

x(t) =2t + 3,
y(t)=3t—4, —-2<t<3.
It is a line segment starting at (—1, —10) and ending at (9,5). We can
eliminate the parameter by first solving the equation x(t) = 2t + 3 for t:

x(t):2t+3,x—3:2t,t:X;3.
Substituting this into y(t), we obtain:
x—3 3x 9 3x 17
y(t)—3t—4,y—3< > >—4,y—2—2—4,y— > T

The slope of this line is given by 2 = 3.
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Derivative of Parametric Equations: Example
Let

x(t) =2t + 3,
y(t)=3t—4, —-2<t<3.

It is a line segment starting at (—1, —10) and ending at (9,5). We can
eliminate the parameter by first solving the equation x(t) = 2t + 3 for t:

x(t) =2t +3, x — 3 = 2t, t:XT_:a.

Substituting this into y(t), we obtain:

-3 3x 9 3x 17
y(t)=3t—4,y=3<X2 >—4,y=X——4,y=X— .

The slope of this line is given by Z

Using Theorem, we calculate x/(t) an
dy

y'(t) = 3. Notice that & L =g =3

dt

3
-2
d y/(t), which gives x'(t) = 2 and
5.
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[e]e] lelelelelelele]e)
Example 1

For the parametric equations:
x(t)=t2 -3, y(t)=2t—1, -3<t<4,

dy. dx __ dy
we first caIcuIate and dt. T = 2t, =2.

Substituting these |nto d—

d
dy @ _2_1
dx % 2t t
t

Since ¢ dt 7é 0, there are no points where the tangent line is horizontal.
Solving % =2t =0, we find t = 0, corresponding to the point (-3, 1)
on the curve.

& o ox
I

+
\
\

6 -4 §2 0 2 4 6 8 10 12 14X
E=0N =2 X0 -3
W =2t-1
3=t=4
-6
t=-3

—al
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Example 2

For the parametric equations:
x(t) =2t +1, y(t)

dy. dx _ dy _ 342
we first calculate % and i =2, F=3t"-3.

Substituting these |nto d—

—3t+4, —2<t<2

dy _ % _3t2-3
dx % 2
t

Since % = 0, there are no points where the tangent line is vertical. To
find where the tangent line is horizontal, we solve dy =3t> -3 =0, giving

t =+1. At t = —1, the point (—1,6) is on the curve, and at t = 1, the
point (3,2) is on the curve.

x(t)=2t+1
yt)y=02-3t+4

2=t=2
t=-2 t=1

6 -4 20 2 4 6 8 10 12X
2

-4
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Example 3

For the parametric equations:

x(t) = bcos(t), y(t) =5sin(t), 0<t<2m,

we first calculate % and ‘j}t’: & — _5sin(t), dt = 5cos(t).
Substituting these |nto d—
dy
dy G
— = % = —cot(t).
dx
dx &
Points where (th =0 occur at t = 3 and t = 37 in the interval [0, 27].

Solving & % = —bsin(t) = 0 yields t = 0,7, 2m. The points corresponding
to these values are (5,0), (—5,0), (5, 0) respectively.
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Derivative and Tangent Lines

Calculate the derivative % for the curve defined by the parametric
equations

x(t)=t>—4t, y(t)=22—-6t, —2<t<3

and find all points on the curve where the tangent line is horizontal or
vertical.

Answer:
dy 6t2—6 3t2—3

dx  2t—4  t—2
The tangent line is horizontal at (—3,4) and (5,4), corresponding to t = 1
and t = —1 respectively. The tangent line is vertical at (—4,4),
corresponding to t = 2.

=2 a
yi) - 2686t
“2=t=3

6 2 4 6 8 102X
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Slope of the Tangent Line in a Special Case

Determine the slope of the tangent line to the hypocycloid
x(t) = 3cos(t) 4+ cos(3t), y(t) = 3sin(t) — sin(3t)

at the point corresponding to t = 0.
Solution: We first calculate x’(t) and y/(t):

x'(t) = —3sin(t) — 3sin(3t), y'(t) = 3cos(t) — 3 cos(3t).

We see that x'(0) = 0, and so (x) cannot be applied to find % when

t = 0. However, x'(t) # 0 when t € [-%, E]\ {0}, X(t) > 0 when

t € [~%Z,0) and X'(t) < 0 when t € (0, Z]), and so we can consider
dy y'(t) im 3 cos(t) — 3cos(3t)

lim — = [i = :
£00 dx 90 x'(t)  t-0 —3sin(t) — 3sin(3t)

Since lim;_,0 (3 cos(t) — 3cos(3t)) = 0 = lim;_,o (—3sin(t) — 3sin(3t)),
we deal with a g indeterminate form and can apply L'Hospital's rule:
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Derivatives of Parametric Equations
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Part 2

. dy . 3cos(t) — 3cos(3t)
lim — = lim - -
t—>0 dx  t—0 —3sin(t) — 3sin(3t)
~im —3sin(t) + 9sin(3t)
t—0 —3 cos(t) — 9 cos(3t)
-0+0 0 0
—3-9 -12
Therefore, when t = 0, the slope of the tangent line is zero, and hence the
tangent line to the hypocycloid is horizontal at the point (4,0),
corresponding to t = 0, where the curve has a cusp.

-+
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Finding a Tangent Line

Find the equation of the tangent line to the parametric curve defined by the
equations

X(t):t273’ y(t)=2t—1, —-3<t<4

at the point corresponding to t = 2.
Solution: We first calculate x'(t) and y’(t):

X'(t)=2t, y'(t)=2.
Next we substitute these into (*):

dy _y'(t) 2 1
dx  x'(t) 2t t

When t = 2, d—i = 1, so this is the slope of the tangent line. Calculating x(2) and
2

y(2) gives x(2) =2° —3 =1 and y(2) = 2(2) — 1 = 3, which corresponds to the
point (1,3) on the curve. We now use the point-slope form of the equation of a
line to find the equation of the tangent line at this point:
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Derivatives of Parametric Equations
00000000080

Part 2

_AQ 2 4 6 8 10 12 14X
-2
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Finding the Equation of the Tangent Line

Find the equation of the tangent line to the curve defined by the equations
x(t)=t>—4t, y(t)=2t3—-6t, —2<t<3
at the point corresponding to t = 5.
Solution: We first calculate x’(t) and y/(t):
X'(t) =2t —4, y'(t)=6t>—6.

Next, we evaluate x'(5) = 2(5) — 4 = 6 and y’(5) = 6(5)?> — 6 = 144. Using the
point-slope form of the equation of a line with the point (x(5), y(5)) and slope
& (5), we have:

v~ ¥(5) = 2 (5)(x - x(5))
Y~ (206)° ~ 6(5) = T ()(x — (57~ 4(5))
14

4
y—40:?(x—6), y — 40 = 24(x — 6), y = 24x + 100.

Therefore, the equation of the tangent line is y = 24x + 100,
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Second Derivative of Parametric Functions

To understand how to take the second derivative of a function defined
parametrically, we start by considering the second derivative of a function
y = f(x). The second derivative of y = f(x) is defined to be the
derivative of the first derivative, which can be represented as

d2y d dy
dx? " dx |dx]|’
d)
Since Zy = gE,

we can replace y on both sides of this equation W|th
This substltutlon leads us to:

dy _d <dy> i(i’i)

dx2  dx \ dx dx
dt
If we know % as a function of t, then this formula is straightforward to
apply.
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Second-Order Derivatives
0®0000

Finding a Second Derivative

Calculate the second derivative % for the plane curve defined by the
parametric equations x(t) = t? — 3, y(t) = 2t — 1.
Solution:

Using (%), we find that % =2=1
Applying (*x), we obtain
d (d
ey _w(®) g0 _ - 1
dx? dx 2t 2t 23"
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Second-Order Derivatives
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Calculating the Second Derivative

Calculate the second derlvatlve ¥ for the plane curve defined by the
equations

x(t)=t3+2t, y(t)=1-t+t

Solution:
Using the parametric equations, we first find the first derivative % using

d dy
the formula & = 4

dx
dt
The first derivatives are: % =312+ 2, % = —1+2t.
So, the first derivative dx is given by:
dy —1+2t
dx  3t242°

Next, to find the second derivative Z S, we dlfferentlate ~ with respect to
t and then divide by T
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Second-Order Derivatives
000@00
Part 2

Differentiating %, we get:
d (dy\ d (=142t  2(3t> +2) —2(—1+2t)(61)
dt \dx) dt\3t2+2) (3t2 +2)? '

Ly
So, the second derivative % is given by:

d?y 446t 1282
dx2  (3t2 +2)3
Answer:
d’y 446t 12t
dx2 — (3t2+2)3
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Examining Concavity of a Parametric Curve

Determine where the parametric curve x(t) = 4t — t2, y(t) = t> + 2 is concave
upward and where it is concave downward.

Solution: .

Applying (*), we find that % = %. Using (**), together with the quotient
rule, we obtain

d (dy) (i)’ 6t(4—2t)—3t2(—2) 24t—6t2
t

ﬂ_ dt \ dx . 4-2 _ (4—2t)2 (@27
dx2 9 42t 4 — 2t 4—2t°

2
We rewrite 2% as
dx

d’y 24t—6t>  6t(4—t)  6t(4—1t) 3t(4—t)
dx®  (4-2t)0  (22-1))® 22—t} 42—t
The numerator has zeros t = 0 and t = 4, while the denominator has a zero
t = 2 of multiplicity 3. Using sample points or any other appropriate method, we

2
find that d—{ > 0, and hence the parametric curve is concave upward, when
dx p p

2
t €(0,2) and t € (4,00), and % < 0, implying that the curve is concave
downward, when t € (—00,0) and t € (2,4).
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Second-Order Derivatives
000000

Concavity of Parametric Curve

Determine where the parametric curve x(t) =t + 1, y(t) = t> + t is
concave upward.

Answer: The curve is concave upward when t € (—o0,0).
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Finding the Area under a Parametric Curve
Now that we have seen how to calculate the derivative of a plane curve,

the next question is this: How do we find the area under a curve defined
parametrically?

Recall the cycloid defined by the equations

x(t) =t —sin(t), y(t)=1— cos(t).

y
64 x(t) =t — sint
¥(t) = 1 — cost
34
i = 0 | x
=37 - 2w % | % T 327 2w 52—” 37
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Integrals Involving PE
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Area under a Parametric Curve
Consider the plane curve defined by the parametric equations

x=x(t), y=y(t)>0, a<t<b

and assume that x(t) is differentiable.
If x(t) is increasing, then the area under this curve is given by

b

A:/ ()%dt

a

If x(t) is decreasing, then the area under this curve is given by
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Finding the Area under a Parametric Curve

Find the area under one arc of the cycloid defined by the equations
x(t) =t —sin(t), y(t)=1-cos(t), 0<t<2m.

Solution: To determine whether x(t) is increasing or decreasing, we look at the
sign of x’(t). We have that x'(t) =1 — cos(t) > 0, and hence x(t) is increasing.
Applying the above theorem, we have

A_/by( )i’T dt = /027r(1—cos(t))(l—cos(t)) dt
/ (1 — 2cos(t) + cos*(t)) dt':/OzTr (12cos(t)+1+c205(2t)> dt
/ 3 pcos(t) + cos§2t)> dt

<3t , smft)) ’
3m

0
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Integrals Involving PE
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Finding the Area under a Parametric Curve

Find the area under the upper half of the hypocycloid defined by the
equations

x(t) = 3cos(t) + cos(3t), y(t)=3sin(t) —sin(3t), 0<t<m.

Answer:
A=3rm

Hint: Use the above theorem, along with the identities

1

sin(a) sin(B) = E[Cos(a — ) — cos(a + B)]
and 1 ot
sin2(t) — —C;S()

Note that x(t) is decreasing.
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Approximating the Arc Length of a Parametric Curve
The same way we did for a regular curve with explicit equation y = f(x) or
x = g(y), to derive a formula for the arc length of a parametric curve, we

approximate it by a union of line segments as shown in the figure above.
yi

A/+\B
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Arc Length of a PC
000000

Arc Length of a Parametric Curve

Consider the plane curve defined by the parametric equations
x=x(t), y=y(t), t<t<t

and assume that x(t) and y(t) are smooth, that is, their derivatives & =
and are continuous. Then the arc length of this curve is given by

t2 dx 2 dy 2
= — — | dt.
= L)+ ()
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Arc Length of a PC
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Arc Length Formula for a Regular Curve: Proof

Now suppose that the parameter can be eliminated, leading to a function

S s—/\/ 2 y) dt
4 ,/H e

Here we have assumed that x/(t) > 0, and the case when x'(t) < 0 is
analogous (the extra minus is going to disappear when the limits of
integration are interchanged). Using a substitution x = x(t), we have that
dx = x'(t) dt, and letting a = x(t1) and b = x(t2) we obtain the formula

s—/ ,/1+ s

which is exactly the one we had before.
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Finding the Arc Length of a Parametric Curve

Find the arc length of the semicircle defined by the equations

x(t) =3cos(t), y(t)=3sin(t), 0<t<m.

Solution: The parametric curve is shown in Figure 9 below. To determine its
length, we use the formula:

=) ()

- /OW \/(73sin(t))2 + (3cos(t))? dt
_ /OW \/9sin?(t) + 9 cos?(t) ot

_ /Oﬂ \/9(sin?(£) + cos2()) dit

:/ 3dt =3t
0

Math 1700 (University of Manitoba)
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= 3.
0
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Note on the Arc Length of a Semicircle

Note that the formula for the arc length of a semicircle is 7wr, and the

radius of this circle is 3. This is a great example of using calculus to derive
a known geometric formula.

Yi

6+

51  x(t) = 3cost
w(t) = 3sint

1 o=t=x

-2+
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Arc Length of a PC
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Finding the Arc Length of a Parametric Curve

Find the arc length of the curve defined by the equations
x(t) =3t%, y(t)=2t>, 1<t<3.

Answer:
s=2 (103/2 - 23/2) .
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Surface Area Genera
©000

Surface Area of a Surface of Revolution

Recall the problem of finding the surface area of a surface of revolution. In
Section 2.4, we derived a formula for the surface area of a surface
generated by revolving the curve y = f(x) > 0 from x =ato x = b
around the x-axis:

S= zw/b FO)\/ 1+ (F(x))? dx.

We now consider a surface of revolution generated by revolving a
parametrically defined curve x = x(t), y = y(t), a <t < b around the
x-axis as shown in Figure 11 below.

The formula for its surface area is

5:277/ (O (< (D) + (V/(£))? de

provided that y(t) is non-negative on |[a, b].

Math 1700 (University of Manitoba) 7.2 Calculus of Parametric Curves Winter 2024 32/35




Finding Surface Area of a Sphere

Find the surface area of a sphere of radius r centered at the origin.

Solution: We start by parametrizing the upper semicircle with center at the
origin and radius r:

x(t) = rcos(t), y(t)=rsin(t), 0<t<m.

When this curve is revolved around the x-axis, it generates a sphere of radius r.
To calculate the surface area of the sphere, we use the formula:

s=2n [ y(OV@F T OO

= 7r/0 rsin(t)y/(—rsin(t))2 + (rcos(t))? dt
—on /OW rsin(t)\/r2(sin2(t) + cos?(t)) dt — 27r/07r P sin(t) dt

T

= 27r?(—cos(t))| = 2mwr?(— cos(m) 4 cos(0)) = 4mr?.
0
This agrees with the geometric formula you might have seen-before.
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Surface Area Genera
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Finding the Area of the Surface of Revolution

Find the area of the surface generated by revolving the plane curve defined
by the equations

x(t)=1t3, y(t)=t> 0<t<1

around the x-axis.

Answer:
Ao 7(494+/13 + 128)

1215
Hint: When evaluating the integral, use a u-substitution.

Math 1700 (University of Manitoba) 7.2 Calculus of Parametric Curves Winter 2024 34 /35



Surface Area Genera
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Key Concepts

@ The derivative of the parametrically defined curve x = x(t) and y = y(t)
can be calculated using the formula % = y,E:g_ Using the derivative, we can

X
find the equation of a tangent line to a parametric curve.

@ If y(t) > 0, the area under the parametric curve can be determined by using

the formula A=+ fab y(t)x'(t) dt, where the choice of sign depends on
whether x(t) is increasing or decreasing over [a, b].

@ The arc length of a parametric curve can be calculated by using the formula
_ b dx\2 dy 2
5= fa (d7)1.5) + (E) dt.
@ The area of a surface obtained by revolving a parametric curve around the

x-axis is given by S = 21 [ y(£)/(x(£))? + ('(£))* dt, provided y(t) > 0
when t € [a, b]. If the curve is revolved around the y-axis, then the formula

isS= 27rf t)\/ (y'(t))? dt, provided x(t) > 0 when t € [a, b].
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Outline

@ Defining Polar Coordinates
© Polar Curves

© Symmetry in Polar Coordinates
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Learning Objectives

Locate points in a plane using polar coordinates.
Convert points between rectangular and polar coordinates.
Sketch polar curves with given equations.

Convert equations between rectangular and polar coordinates.

Identify symmetry in polar curves and equations.
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Polar Coordinates

To find the coordinates of a point in the polar coordinate system, consider
the Figure below. The point P has Cartesian coordinates (x, y). Consider
the line segment connecting the origin to the point P. Its length is equal
to the distance from the origin to P and we denote it by r. We also
denote the angle between the positive x-axis and the line segment by 6.
Then (r,0) are the polar coordinates of P.

Yi
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Defining Polar Coordinates
0@0000000000000000

Converting Points between Coordinate Systems

Conversion Formulas

Given a point P in the plane with Cartesian coordinates (x, y) and polar
coordinates (r, ), the following conversion formulas hold true:

(*) x = rcos(f) and y = rsin(0),
(**) r?=x*+y? and tan(d) = L.
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Defining Polar Coordinates
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Quadrants

¥y
A
T T
— <0 <7 =
2 Bem 0<8< 2
Quardant 2 Quardant 1
—tan-1 (¥ —tan-' (¥
8 = tan (x)+rr 8 =tan (X)
X
- -
—-T<f< T T <@<0
Quardant 3 Quardant 4
— a1 (XY — a1 (Y
8 = tan (x) T 8 = tan (x)
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Defining Polar Coordinates
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Converting Rectangular to Polar Coordinates: Example 1

Convert the rectangular coordinates (1,1) into polar coordinates:
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Defining Polar Coordinates
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Converting Rectangular to Polar Coordinates: Example 1

Convert the rectangular coordinates (1,1) into polar coordinates:
Solution:

P2 — 2

X

42 =12412=2

)
S

tan(0

~
I
—

>
I
AAX I

Therefore, the polar coordinates are (v/2, ).
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Defining Polar Coordinates
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Converting Rectangular to Polar Coordinates: Example 2

Convert the rectangular coordinates (—3,4) into polar coordinates:
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Converting Rectangular to Polar Coordinates: Example 2
Convert the rectangular coordinates (—3,4) into polar coordinates:

Solution:

rP=x2+y?=(-32+4=25

4
0 =m—arctan ( =
m arcan<3>

Therefore, the polar coordinates are (5, ™ — arctan (%))
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Defining Polar Coordinates
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Converting Rectangular to Polar Coordinates: Example 3

Convert the rectangular coordinates (0, 3) into polar coordinates:

Math 1700 (University of Manitoba) 7.3 Polar Coordinates Winter 2024 9/41



Defining Polar Coordinates
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Converting Rectangular to Polar Coordinates: Example 3

Convert the rectangular coordinates (0, 3) into polar coordinates:
Solution:

\
I

>
I
TR

Therefore, the polar coordinates are (3, 7).
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Defining Polar Coordinates
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Converting Rectangular to Polar Coordinates: Example 4

Convert the rectangular coordinates (51/3, —5) into polar
coordinates:
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Defining Polar Coordinates
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Converting Rectangular to Polar Coordinates: Example 4

Convert the rectangular coordinates (51/3, —5) into polar
coordinates: Solution:

r=10
7r
0=——
6
Therefore, the polar coordinates are (10, —%).
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Defining Polar Coordinates
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Converting Polar to Rectangular Coordinates: Example 1

Convert the polar coordinates (3, %) into rectangular coordinates:
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Defining Polar Coordinates
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Converting Polar to Rectangular Coordinates: Example 1

Convert the polar coordinates (3, %) into rectangular coordinates:
Solution:

x = rcos(#) = 3 cos (g) = g
y = rsin(f) = 3sin (g) — %

2
Therefore, the rectangular coordinates are (%, 32ﬁ>
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Defining Polar Coordinates
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Converting Polar to Rectangular Coordinates: Example 2

Convert the polar coordinates (2, 3F) into rectangular coordinates:
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Defining Polar Coordinates
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Converting Polar to Rectangular Coordinates: Example 2

Convert the polar coordinates (2, 3F) into rectangular coordinates:
Solution:

x=0
y =2

Therefore, the rectangular coordinates are (0, —2).
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Defining Polar Coordinates
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Converting Polar to Rectangular Coordinates: Example 3

Convert the polar coordinates (6, —Sgr) into rectangular coordinates:
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Defining Polar Coordinates
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Converting Polar to Rectangular Coordinates: Example 3

Convert the polar coordinates (6, L

?) into rectangular coordinates:
Solution:

x = —3V3
y=-3

Therefore, the rectangular coordinates are (—3+/3, —3).
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Defining Polar Coordinates
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Converting Rectangular to Polar Coordinates

Convert the rectangular coordinates (—8, —8) into polar coordinates:
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Defining Polar Coordinates
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Converting Rectangular to Polar Coordinates

Convert the rectangular coordinates (—8, —8) into polar coordinates:
Solution:

6 =tan"1(1) — 7 (since in the third quadrant)

Therefore, the polar coordinates are (8v/2,—3T).
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Defining Polar Coordinates
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Converting Polar to Rectangular Coordinates

Convert the polar coordinates (4, 23”) into rectangular coordinates:
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Defining Polar Coordinates
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Converting Polar to Rectangular Coordinates

Convert the polar coordinates (4, 2r

T) into rectangular coordinates:
Solution:

27 1
x = rcos(6) cos( 3 > X ( 2)

y = rsin(f) = 4sin (237T> —4x ‘f =2V3

Therefore, the rectangular coordinates are (—2,2\/§).
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Defining Polar Coordinates
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Non-Uniqueness of Polar Representation

Example: The point (1, ﬁ) in the rectangular system has multiple polar
representations.

For instance:
T Vs
2, 7) d (2,
( 3)°" < 3>

both represent the same point.

Solution: Both polar representations correspond to the same point in the
rectangular system.
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Defining Polar Coordinates
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Usage of Negative Radius in Polar Coordinates

Example: The point (1, \ﬁ) in the rectangular system can also be
represented using negative radius in polar coordinates.

For instance:
< 2’4 )
3

Solution: Using the conversion formulas:

x = rcos(f) = —2cos (437T> =1

y = rsin(8) = —2sin <4§> ~ 3

Therefore, (—2, 43“) represents the point (1, \/§)
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Defining Polar Coordinates
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Important

Geometrically, when we plot a point with a negative radial coordinate, we
measure the distance of |r| along the halfline that is in the opposite
direction to the one that makes the angle of 6 with the positive x-axis, so
basically the minus reverses the direction, the same way as with angles.)

Infinite number of polar coordinates

Every point in the plane has an infinite number of representations in polar
coordinates. However, each point in the plane has only one representation
in the rectangular coordinate system.
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Polar Coordinate System

@ r is the directed distance that the point lies from the origin and # measures
the angle that the line segment from the origin to the point makes with the
positive x-axis.

@ Positive angles are measured in a counterclockwise direction, and negative
angles are measured in a clockwise direction.

2 s
2% 12 12

2 =
3 3
37 &
4 4
5 d
6 6
Ur Z
12 12
T 0 (Polar axis)
- 23m
12 12
= Ly
6 3
57 Tw
4 T
.ad Sa
3 1= 187 3

12 37 12
2
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Plotting Points on Polar Plane

Solution

Plot each of the following points on the polar plane:
L (2? %)v (_37 2%) and (4a E%r)

I
(4 54—11') . ® (‘ y 2%)
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Plotting Points on the Polar Plane

Plot the points (4, %) and (—3,—%F) on the polar plane.

Solution: The points are plotted in the following figure.

Pl e
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Polar Curves
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Plotting Curves in the Polar Coordinate System

Now that we know how to plot points in the polar coordinate system, let’s
discuss how to plot curves.

In the rectangular coordinate system, we can graph a function y = f(x)
and create a curve in the Cartesian plane. Similarly, in the polar coordinate
system, we can graph a curve that is generated by a function r = f(0).

@ In this context, r represents the distance from the origin to a point on
the curve, and 0 represents the angle that the line segment from the
origin to that point makes with the positive x-axis.

@ To plot a curve given by r = 7(0), we evaluate r for various values of
0, and then plot the corresponding points in the polar plane.

@ Connecting these points with smooth lines or curves gives us the
graph of the polar function.

We'll explore this concept further with examples in the upcoming slides.
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Polar Curves
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Problem-Solving Strategy: Plotting a Curve in Polar
Coordinates

To plot a curve in polar coordinates, follow these steps:

Five Steps

@ Create a table with two columns. The first column is for 8, and the
second column is for r.

@ Create a list of values for 6.
© Calculate the corresponding r values for each 6.

© Plot each ordered pair (r,6) on the coordinate axes.

© Connect the points and look for a pattern.

v

This strategy helps in visualizing and understanding the behavior of curves
in the polar coordinate system.
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Graphing a Function in Polar Coordinates

Graph the curve defined by the function r = 4sin(6). ldentify the curve
and rewrite the equation in rectangular coordinates.

Solution: Because the function is a multiple of a sine function, it is
periodic with period 2w. We will use values for 8 between 0 and 27. The
result of steps 1-3 appear in the following table:

r = 4sin(0) 0 r =4sin(6)

0 7 0
i
2 Ix —2

2V2~28 | 3 | —2v/2~ 28
2V3~34 | 7 | —2y/3~ 34
4 3m 4
2V3~34 | 2 | —2\/3~ 34
2v2~28 || T | —2V2~-28
2 i —2
0
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Polar Curves
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Graph and center

r= 4sing

(22.%) (22.7)

0O 1 2 3 a4 s
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Polar Curves
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Graph and center

r= 4sing

22.5)

(©, 0)

This is the graph of a circle. The equatic
rectangular coordinates by first multiplyir

n r = 4sin(0) can be converted into
ng both sides by r. This gives the

equation r? = 4rsin(f). Next, we use the facts that r> = x* + y2 and
y = rsin(6). This gives x> + y? = 4y. To put this equation into standard form,

we subtract 4y from both sides of the eq

uation and complete the square:

x?+y? -4y = 0
X2+ (y*-4y) = 0
2+ (y>—4y+4) = 0+4
X2+ (y —2)? = 4
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Graph of r =4 + 4 cos(0)

Hint: Follow the problem-solving strategy for creating a graph in polar
coordinates.
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Polar Curves
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Graph of r =4 + 4 cos(0)

Hint: Follow the problem-solving strategy for creating a graph in polar
coordinates.
Solution:

= 4.+ 4c0s0

12 3 4 5 6 7 9

The name of this shape is a cardioid, which we will study further later in

this section.
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Polar Curves
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Transforming Polar Equations to Rectangular Coordinates

Example 1: Rewrite § = Z in rectangular coordinates and identify the

graph.

Solution: Take the tangent of both sides. This gives

tan(¢) = tan(%) = v/3. Since tan(f) = £, we can replace the left-hand
side with £, resulting in Z = V/3. This equation represents a straight line
passing through the origin with slope v/3. Therefore, the graph represents
a line passing through the origin with a slope of v/3. In general, any polar
equation of the form 6 = K represents a straight line through the pole
with slope equal to tan(K).
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Polar Curves
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Transforming Polar Equations to Rectangular Coordinates

Example 2: Rewrite r = 3 in rectangular coordinates and identify the
graph.

Solution: First, square both sides of the equation. This gives r?> = 0.
Next, replace r? with x% + y2, resulting in x2 4 y2 =0, which is the
equation of a circle centered at the origin with radius 3.

In general, any polar equation of the form r = k, where k is a constant,
represents a circle of radius |k| centered at the origin. (Note: when
squaring both sides of an equation, it is possible to introduce new points
unintentionally. This should always be taken into consideration. However,
in this case, we do not introduce new points. For example, (=3, §) is the
same point as (3, %).)
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Polar Curves
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Transforming Polar Equations to Rectangular Coordinates

Example 3: Rewrite r = 6 cos(f) — 8sin(f) in rectangular coordinates and
identify the graph.

Solution: Multiplying both sides by r gives r? = 6r cos(f) — 8rsin(f).
Substituting x = rcos(f) and y = rsin(6), we get x> + y? = 6x — 8y.
Completing the square yields (x — 3)? + (y + 4)2 = 25, which is the
equation of a circle with center at (3, —4) and radius 5. Notice that the
circle passes through the origin since the center is 5 units away.

Math 1700 (University of Manitoba) 7.3 Polar Coordinates Winter 2024 29 /41



Rewriting Polar Equation in Rectangular Coordinates

To rewrite the given polar equation r = sec(#) tan(6) in rectangular coordinates.
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Rewriting Polar Equation in Rectangular Coordinates

To rewrite the given polar equation r = sec(#) tan(6) in rectangular coordinates.
Solution:

The trigonometric identities we'll use are:
1 sin(6)
tan(9) =
cos(f)’ an(6) cos(0)
Substituting these identities into the equation r = sec(6) tan(f), we get:
1 sin(6)
~ cos(f) cos(f)

Now, let's express r in terms of x and y. Since x = rcos(f) and y = rsin(6), we
have:

sec() =

P2 =x2 4 y2

Therefore, our equation becomes: x? + y? = £
X

Multiplying both sides by x to clear the fraction, we obtain:
X txy? =y

This equation represents a curve in rectangular coordlnates Specifically, it's_the
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Polar Curves
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Summary of Common Curves Defined by Polar Equations

Polar Equation Description
=K Line
r=acosfl + bsind Circle
r = asin(6) Circle with radius a centered on x-axis
r = acos(f) Circle with radius a centered on y-axis
r=a+ bl Spiral
r=a= bsin(0) Cardioid if a= b
r=a=+ bcos(0) Cardioid if a= b
r=a+ bsin(0) Limacon with a loops if b > a
r =a+ bcos(0) Limagon with a loops if b > a
r = asin(26) Rose with a petals
r = acos(20) Rose with a petals
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Polar Curves
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Figures

Name Equation Example Name Equation Example
Line passing through the | 0 = K Cardioid r=a(l + cosf)
pole with slope tan K
r=3(1 + cosn)
r= a1 - sino)
r
1234567
circle acost + bsing Limagon r=acost + b
r=asing + b =24 4sing
r = 2cost + 3sint
T r
12\3 45 1234567
spiral r=a+bo Rose r = acos(be)
r = asin(bb)
= 3sin26.
:
R
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Polar Curves
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Cardioid and Rose Curves

Cardioid:
@ A cardioid is a special case of a r = 3sin30
limacon where a = b or a = —b.

Rose Curve:
@ The graph of r = 3sin(26) has
four petals.
@ The graph of r = 3sin(36) has
three petals.

o If the coefficient is irrational,
then the curve never closes,
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Polar Curves
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Cardioid and Rose Curves

Cardioid:
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limacon where a = b or a = —b.

Rose Curve:
@ The graph of r = 3sin(26) has
four petals.
@ The graph of r = 3sin(36) has
three petals.

o If the coefficient is irrational,
then the curve never closes,

Math 1700 (University of Manitoba) 7.3 Polar Coordinates Winter 2024 33 /41



Calculus with Polar Curves

Find the slope of the tangent line to the spiral with polar equation
r = m — 0 at the point corresponding to 6 = 2{
Solution:
x = rcos(f) = (m — 6) cos(6)
y = rsin(f) = (7w — ) sin(0)
Next, find % as a function of 0:
dy dy/do
dx  dx/df
_ 2 ((m — 0)sin(0))
3 ((m = 6) cos(6))
_ —sin(f) 4 (7 — 6) cos(8)
~ —cos(f) + (7 — 0)(—sin())
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Part 2

The slope m of the tangent line at 0 = 2% is:

_dy (277
dx \ 3
_—sin(F) £ (7= F) cos (5)
- —cos () + (m—F) (—sin (F))
_ fez(Y)
~(D+5 (%)
3V3+ 7
—3+ /37
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Calculus with Polar Curves

Find the slope of the tangent line to the polar curve r =1 + sin(6) at the
point corresponding to 6 = —7.

Solution: To find the slope of the tangent line, we first need to find the
derivative of r with respect to 6, denoted as %.

Given the polar equation r = 1 + sin(6), we differentiate it with respect to

0 using the chain rule:

% = %(1 +sin(#)) = cos(0)
Now, evaluate % at 0 = —7:
do o= 4 V2
The slope of the tangent line at 6 = —7 is the negative reciprocal of %:

1
Slope = ——— = —V2+1

/~
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Symmetry in Polar Coordinates
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Symmetry in Polar Curves and Equations

Consider a polar curve with equation r = f(6).

@ The curve is symmetric about the polar axis if for every point (r, )
on the graph, the point (r,—0) is also on the graph. This happens if
f(—=0) =f(0) or f(r —6) = —£(0).

@ The curve is symmetric about the pole if for every point (r,8) on the
graph, the point (r, 7 + ) is also on the graph. This happens if
f(m+0)=r(06).

@ The curve is symmetric about the vertical line 6 = 7 if for every point
(r,0) on the graph, the point (r,m — ) is also on the graph. This
happens if f(m — 0) = £(0) or f(—0) = —£(6).
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Symmetry in Polar Coordinates
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Examples of each type of symmetry

Symmetry with respect to the polar axis:
For every point (r, 0) on the graph, there is
also a point reflected directly across the

horizontal (polar) axis. (r, 0) =2~ 20080
r
(r, <0)
Symmetry with respect to the pole:
For every point (r, ) on the graph, there is
also a point on the graph that is reflected
through the pole as well. (r.6)

2 = 9cos(20)

(=r.0)

Symmetry with respect to the vertical

lined = %: For every point (r, ) on the

graph, there is also a point reflected directly

across the vertical axis.

r=2- 2sing
r
(r,0) (rym~0)
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Symmetry in Polar Coordinates
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Using Symmetry to Graph a Polar Equation

Determine all symmetries of the rose
The rose is defined by the equation r = 3sin(26).

Suppose the point (r,0) is on the graph of r = 3sin(20). Let
f(0) = 3sin(20). We first substitute —6 instead of € into f:

f(—6) = 3sin(—20) = —3sin(26) = —£(0)

since sine is an odd function. According to iii in the statement above, this
implies symmetry with respect to the vertical line 6 = 7.
To test for symmetry with respect to the polar axis, we consider (7 — 6):

f(r — 0) = 3sin(2m — 20) = 3sin(—26) = —3sin(26)

since sine function is 2m-periodic and odd. Hence, by i, we have that the
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Symmetry in Polar Coordinates
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Graphs : Reflecting into the other three quadrants

0 r
Table of Values 0 0

s 3vV3

5 P ~26

: 33 ’

% 2~ 2.6

s 0

r = 3sin2f
0595% r-= 3sin2¢

LY
N
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Symmetry in Polar Coordinates
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Key Concepts

@ The polar coordinate system provides an alternative way to locate
points in the plane.
@ Convert points between rectangular and polar coordinates using the
formulas:
x = rcos(6)

y = rsin(0)

r=vx2+y?
_Y
tan(0) = .

@ To sketch a polar curve, make a table of values and take advantage of
periodic properties.

@ Use the conversion formulas to convert equations between rectangular
and polar coordinates.

@ ldentify symmetry in polar curves, which can occur through the pole,
the horizontal axis, or the vertical axis.
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Outline

@ Areas of Regions Bounded by Polar Curves

© Arc Length for Polar Curves
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Learning Objectives

@ Derive the formula for the area of a region in polar coordinates.

@ Determine the arc length of a polar curve.
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gions Bounded by Polar Curves

Area and Arc Length in Polar Coordinates

In the rectangular coordinate system, the definite integral provides a way to
calculate the area under a curve. In particular, if we have a function y = f(x)
defined from x = a to x = b where f(x) > 0 on this interval,

Area between the curve and the x-axis
The area between the curve and the x-axis is given by

Arc length of this curve

We can also find the arc length of this curve using the formula

b
L :/\/1 + (F/(x))? dx.
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Areas of Regions Bounded by Polar Curves
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Area Bounded by a Polar Curve

Consider a polar curve defined by the function r = f(6), where o < 6 < .

Our first step is to partition the interval [, §] into n equal-width subintervals.
Thus A9 = (B;f) and the ith partition point 6; = o + iA6. Each partition point
0 = 0; defines a line with slope tan(;) passing through the pole as shown in the
following graph.

The area of a sector of a circle with angle 6; can be given as:

1 , 1 )
A= S(80) (F0)) = 5(F(0)D0.
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Areas of Regions Bounded by Polar Curves
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Exact Area Calculation

Summing the areas of sectors for 1 </ < n, we obtain a Riemann sum
that approximates the polar area:

A~ zn:A,- - Z %(f(g,-))%@.
i=1

i=1
We take the limit as n — oo to get the exact area:

n

: 1 1 [P
A= lim > Z(f(6:)200 == [ (f(F))? db.
n—00 4 2 2 a
i=1
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Area of a Region Bounded by a Polar Curve

Suppose f is continuous and nonnegative on the interval a < 6 < 3 with
0 < 8 —a < 27. The area of the region bounded by the graph of r = f(6)
between the radial lines 6 = « and § = § is:

(%) A:é/j[f(e)]2 d@:;/jrzde.

Example: Finding the Area of a Polar Region

Find the area of one petal of the rose defined by the equation
r = 3sin(26).
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Areas of Regions Bounded by Polar Curves
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Graph

The graph of r = 3sin(260) is shown below.

r = 3sin2¢0
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Areas of Regions Bounded by Polar Curves
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Finding the Area Inside the Petal: Solution
It follows that the petal in the first quadrant corresponds to 6 € [O, g] To

find the area inside this petal, use (*) from the above theorem with
f(8) =3sin(20), a =0, and 3 = T:

A= ;/j[f(e)Fde = ;/Og[3sin(29)]2d0 = ;/2 9sin?(20)d0.

0

To evaluate this integral, use the formula sin?(a) = 1_%5(2&) with a = 26:

1 /3 21— cos(4 2
A= /2 0sin2(20)d0 = /2 1= cos(49) gy 9/2(1 — cos(46))d6
2 0 2 0 2 4 0

_ % <0 B sini40)>

Math 1700 (University of Manitoba)
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Finding the Area Inside the Cardioid

Problem: Find the area inside the cardioid defined by the equation
r=1— cos(0).

Answer: A = 37”

Hint: Use (*). Be sure to determine the correct limits of integration
before evaluating.
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Finding the Area between Two Polar Curves

Problem: Find the area outside the cardioid r = 2 + 25sin(#) and inside the circle
r = 6sin(0).

Solution: First draw a graph containing both curves as shown below.

6sin(0) = 2+ 2sin(f) = 4sin(d) =2 =sin(d) = 1

2
Then 6 = % and 0 = %’T in the interval (—m, 7], which are the limits of integration

since from the picture we see that 6sin(6) > 2+ 2sin(f) on [Z,2F]. The circle
r = 65sin(0) is the red graph, which is the outer function, and the cardioid
r =2+ 2sin(f) is the blue graph, which is the inner function. To calculate the

area between the curves, start with the area inside the circle between ¢ = % and
=2z

e then subtract the area inside the cardioid between 0 = % and 6 = %’T:
Math 1700 (University of Manitoba) 7.4 Area and Arc Length in Polar Coordinates Winter 2024
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Areas of Regions Bounded by Polar Curves
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Part 2

A = circle — cardioid

. ;/ﬁﬁ [65in(6)]d6 — ;/; [2 + 25in(6)]2d0

5m 5m

5m

1 6 .2 1 STW . .2
=3 36sin”(0)do — 5 (4 + 8sin(0) + 4sin”(0))do
3 s
24 24
:18/6 1—#5(29)(!672/6(14»25"](6)4»1—#5(20))0,0
% s

6

% _9 (% — 2cos(6) — @)

o
N
o

5w
6

ol
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Areas of Regions Bounded by Polar Curves
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Finding the Area Inside and Outside Circles

Problem: Find the area inside the circle r = 4 cos(f) and outside the

circle r = 2.
Answer: A = %” +24/3.
Hint: Use (*) and take advantage of symmetry.
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Arc Length of a Curve in Polar Coordinates

Here we derive a formula for the arc length of a curve defined in polar
coordinates. In rectangular coordinates, the arc length of a parameterized
curve (x(t),y(t)) for a <t < b is given by

b
dx\? dy 2
L= — — | dt.
a
In polar coordinates we define the curve by the equation r = f(6), where

a < 60 < B. In order to adapt the arc length formula for a polar curve, we
use the equations

x =rcos(f) = f(0)cos(f) and y = rsin(f) = f(0)sin(0).
Differentiating, we obtain
9 — £'(0) cos() — £(0)sin(0)

% = f'(0) sin(0) + £(#) cos().
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Second part

Applying the known arc length formula, we get

- [ (5

B
= / \/(f’(ﬁ) cos(f) — () sin(t9))2 + (£'(0) sin(8) + () cos(9))2d0

/ \/ f/(0))? (cos(0) + sin?(0)) + (£(0))* (cos?(0) + sin?(0)) db

- [dewr s ora- [\e (&)
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Arc Length for Polar Curves
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Arc Length of a Curve Defined by a Polar Function

Let f be a function whose derivative is continuous on an interval
a < 0 < . The length of the polar curve r = f(0) from 6 = a to 0 = [ is

L= /j \/[f(e)]2 +[F(0)] df = /j \[r2+ (%)2 de.
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Arc Length for Polar Curves
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Finding the Arc Length of a Polar Curve

Problem: Find the arc length of the cardioid r = 2 4 2 cos(#).
Solution:

L= /7r \/[2 +2cos(A))? + [—2sin(B)]* db

_ / \/4+ 8cos(6) + 4cos?(6) + 4sin(6) b

= /Tr \/ 8+ 8cos(0) di

:2/7;\/md9:2/1,/4cos2(2>d9
=2 _7;2 cos 5 do =4 _:cos 5 df =4 (2sin 5 '
[ 2l (3)] o= [ (5) ar=s (20 (5)) |

=8(1—(-1)) = 16.
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Finding the Arc Length of r = 3sin(0)

Problem: Find the total arc length of r = 3sin(6).

Answer: 371

Hint To determine the correct limits, make a table of values.
Solution: To determine the correct limits, make a table of values for 8
and r, then observe the behavior of r as 6 varies.

6

E
0 0
/2 | 3
7 0
3n/2| -3
21 0

As 0 goes from 0 to 27, the curve traces out a single wave of the sine
function from r = 0 to r = 3 and back to r = 0. Hence, the total arc
length is s = 3.
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Arc Length for Polar Curves
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Key Concepts

@ The area of the region bounded by the polar curve r = f(6) and
between the radial lines # = a and 6 = (3 is given by the integral

8
= % / [F(0)]? d6.

o To find the area between two curves in the polar coordinate system,
first find the points of intersection, then subtract the corresponding
areas.

@ The arc length of a polar curve defined by the equation r = f(6) with
a < 6 < 3 is given by the integral

L—/\/[fe)]z ar d9_/
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Arc Length for Polar Curves
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Key Equations

Area of a region bounded by a polar curve:

L] L]
A:2/[f(9)]2d0:2/r2d9

Arc length of a polar curve:

B 2
L= / \/[f(e)]2+ [ﬂ do

I
P
ﬁl\J
+
~~
Sk
N~

N
Q.
I
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