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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Introduction

In urban landscapes, strategic traffic signal planning can prevent accidents
at busy intersections. Consider a city where changes to traffic lights were
made at a problematic junction, resulting in no accidents over eight
months. Were these changes effective or coincidental? Integration plays a
vital role in answering this question.

Integration is pivotal across disciplines, from computing volumes to
pinpointing centers of mass. This chapter delves into advanced integration
techniques such as integration by parts and trigonometric integrals,
essential for various fields.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Learning Objectives

Recognize when to use integration by parts.

Use the integration-by-parts formula to evaluate indefinite integrals.

Apply the integration-by-parts formula for definite integrals.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Integration by Parts

Let u = f (x) and v = g(x) be functions with continuous derivatives.
Then, the integration-by-parts formula for the integral involving these two
functions is:

Formula of Integration by Parts∫
u dv = uv −

∫
v du.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Using Integration by Parts

Use integration by parts with u = x and dv = sin(x) dx to evaluate∫
x sin(x) dx .

Solution: By choosing u = x , we have du = 1 dx . Since dv = sin(x) dx ,
we can take v to be any antiderivative of sin(x), and the simplest choice
would be v = − cos(x). It is handy to keep track of these values as follows:

u = x dv = sin(x) dx
du = dx v = − cos(x).

Applying the integration-by-parts formula (*) results in

∫
x sin(x) dx = (x)(− cos(x))−

∫
(− cos(x))(dx) (substitute)

= −x cos(x) +
∫
cos(x) dx (simplify)

= −x cos(x) + sin(x) + C . (integrate cos(x))

Analysis:
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Analysis

At this point, there are probably a few items that need clarification. First
of all, you may be curious about what would have happened if we had
chosen u = sin(x) and dv = x . If we had done so, then we would have
du = cos(x) and v = 1

2x
2. Thus, after applying integration by parts, we

would get ∫
x sin(x) dx =

1

2
x2 sin(x)−

∫
1

2
x2 cos(x) dx .

Unfortunately, with the new integral, we are in no better position than
before. It is important to keep in mind that when we apply integration by
parts, we may need to try several choices for u and dv before finding a
choice that works.
Second, you may wonder why, when we find v as an antiderivative of
sin(x) we do not use v = − cos(x) + K . To see that it makes no
difference, we can rework the problem using v = − cos(x) + K :
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Analysis (cont’d)

∫
x sin(x) dx

= (x)(− cos(x) + K )−
∫
(− cos(x) + K ) dx (substitute)

= −x cos(x) + Kx +
∫
cos(x) dx (simplify)

= −x cos(x) + sin(x) + C . (integrate cos(x))

As you can see, it makes no difference in the final solution.
Last, we can verify that our antiderivative is correct by differentiating
−x cos(x) + sin(x) + C :

d
dx (−x cos(x) + sin(x) + C )
= (−1) cos(x) + (−x)(− sin(x)) + cos(x)
= x sin(x).

Therefore, the answer we obtained is correct.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Example

To evaluate
∫
xe2x dx using integration by parts, we choose u = x and

dv = e2x dx . Then, we have du = dx and v = 1
2e

2x .
Applying the integration-by-parts formula

∫
u dv = uv −

∫
v du, we get:∫

xe2x dx = x · 1
2
e2x −

∫
1

2
e2x dx

=
1

2
xe2x − 1

2

∫
e2x dx

=
1

2
xe2x − 1

4
e2x + C ,

where C is the constant of integration. Therefore, the solution is
1
2xe

2x − 1
4e

2x + C .
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Evaluate
∫ ln(x)

x3 dx

Solution:
Begin by rewriting the integral:∫

ln(x)

x3
dx =

∫
x−3 ln(x) dx .

Since this integral contains the algebraic function x−3 and the logarithmic
function ln(x), choose u = ln(x), since L comes before A in LIATE. After we have
chosen u = ln(x), we must choose dv = x−3 dx .
Next, since u = ln(x), we have du = 1

x dx . Also,
∫
x−3 dx = − 1

2x
−2 + C , and so

we take v = − 1
2x

−2. Summarizing,

u = ln(x) dv = x−3 dx
du = 1

x dx v = − 1
2x

−2.

Substituting into the integration-by-parts formula gives:∫ ln(x)
x3 dx =

∫
x−3 ln(x) dx = (ln(x))

(
− 1

2x
−2

)
−
∫ (

− 1
2x

−2
) (

1
x dx

)
= − 1

2x
−2 ln(x) +

∫
1
2x

−3 dx = − 1
2x

−2 ln(x)− 1
4x

−2 + C .
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Evaluate
∫
x ln(x) dx

Answer: To evaluate the integral
∫
x ln(x) dx , we will use the integration

by parts formula: ∫
u dv = uv −

∫
v du

where u = ln(x) and dv = x dx .
Solution: We start by choosing u = ln(x) and dv = x dx . Then, we find
du and v :

du =
1

x
dx and v =

1

2
x2

Applying the integration by parts formula, we have:∫
x ln(x) dx = uv −

∫
v du = ln(x) · 1

2
x2 −

∫
1

2
x2 · 1

x
dx

=
1

2
x2 ln(x)− 1

2

∫
x dx =

1

2
x2 ln(x)− 1

4
x2 + C

where C is the constant of integration.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Evaluate
∫
x2e3x dx

Solution: Using LIATE, choose u = x2 and dv = e3x dx . Thus,
du = 2x dx and

∫
e3x dx = 1

3e
3x + C , which means we can take v = 1

3e
3x .

Therefore,
u = x2 dv = e3x dx

du = 2x dx v =
1

3
e3x

Substituting into the integration by parts formula (*), we get∫
x2e3x dx =

1

3
x2e3x −

∫
2

3
xe3x dx .

We still cannot integrate
∫

2
3xe

3x dx directly, but the integral now has a
lower power on x . We can evaluate this new integral by using integration
by parts again. To do this, choose u = x and dv = 2

3e
3x dx . Thus,

du = dx and
∫

2
3e

3x dx = 2
9e

3x . Now we have
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Applying Integration by Parts More Than Once
(Continued)

u = x dv =
2

3
e3x dx

du = dx v =
2

9
e3x

Going back to the previous equation and using (*), we get∫
x2e3x dx =

1

3
x2e3x −

∫
2

3
xe3x dx

=
1

3
x2e3x −

(
2

9
xe3x −

∫
2

9
e3x dx

)
.

After evaluating the last integral and simplifying, we obtain∫
x2e3x dx =

1

3
x2e3x − 2

9
xe3x +

2

27
e3x + C .

where C is the constant of integration.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Applying Integration by Parts When LIATE Doesn’t Quite
Work (Part 1)

Evaluate
∫
t3et

2
dt.

Solution: If we use a strict interpretation of the mnemonic LIATE to
make our choice of u, we end up with u = t3 and dv = et

2
dt.

Unfortunately, this choice won’t work because we are unable to evaluate∫
et

2
dt. However, since we can evaluate

∫
tet

2
dt, we can try choosing

u = t2 and dv = tet
2
dt. We then have

u = t2 dv = tet
2
dt

du = 2t dt v = 1
2e

t2 .∫
t3et

2
dt = t2 · 1

2
et

2 −
∫

1

2
et

2
2t dt

Let us compute
∫
tet

2
dt
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Applying Integration by Parts When LIATE Doesn’t Quite
Work (Part 2)

∫
tet

2
dt =

∫
et

2 1

2
(2t) dt =

1

2

∫
et

2
(t2)′ dt

=
1

2

∫
ewdw

=
1

2
ew + C

=
1

2
et

2
+ C ,

Thus, we obtain ∫
t3et

2
dt =

1

2
t2et

2 − 1

2
et

2
+ C .
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Applying Integration by Parts More Than Once (Part 1)

Evaluate
∫
sin(ln(x)) dx .

Solution: This integral appears to have only one function—namely,
sin(ln(x))—however, we can always use the constant function 1 as the
other function. In this example, let’s choose u = sin(ln(x)) and dv = 1 dx .
(The decision to use u = sin(ln(x)) is easy. We can’t choose
dv = sin(ln(x)) dx because if we could integrate it, we wouldn’t be using
integration by parts in the first place!) Consequently,
du = cos(ln(x))

(
1
x

)
dx and we can take v = x as an antiderivative of 1.

After applying integration by parts to the integral and simplifying, we
obtain ∫

sin(ln(x)) dx = x sin(ln(x))−
∫

cos(ln(x)) dx

Unfortunately, this process leaves us with a new integral that is very
similar to the original.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Applying Integration by Parts More Than Once (Part 2)

However, let’s see what happens when we apply integration by parts again. This
time let’s choose u = cos(ln(x)) and dv = 1 dx , making du = − sin(ln(x))

(
1
x

)
dx

and, again, v = x . Substituting, we have∫
sin(ln(x)) dx = x sin(ln(x))− (x cos(ln(x))−

∫
− sin(ln(x)) dx)

= x sin(ln(x))− x cos(ln(x)) +

∫
sin(ln(x)) dx .

Substituting I instead of
∫
sin(ln(x)) dx into the above equality, we obtain:

I = x sin(ln(x))− x cos(ln(x))− I .

To find I , add I to both sides of the equation:

2I = x sin(ln(x))− x cos(ln(x)),

and then divide by 2: I = 1
2x sin(ln(x))−

1
2x cos(ln(x)). Since I was a particular

antiderivative of sin(ln(x)), we have∫
sin(ln(x)) dx = I + C =

1

2
x sin(ln(x))− 1

2
x cos(ln(x)) + C ,

where C is an arbitrary constant.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Applying Integration by Parts

Evaluate
∫
x2 sin(x) dx .

Solution: Let’s use integration by parts with u = x2 and dv = sin(x) dx .
Then, du = 2x dx and v = − cos(x). Applying the integration by parts
formula: ∫

x2 sin(x) dx = x2(− cos(x))−
∫

− cos(x) · 2x dx

= −x2 cos(x) + 2

∫
x cos(x) dx .

Now, let’s integrate
∫
x cos(x) dx by parts again. Choosing u = x and

dv = cos(x) dx , we get du = dx and v = sin(x). Thus,∫
x2 sin(x) dx = −x2 cos(x) + 2(x sin(x)−

∫
sin(x) dx)

= −x2 cos(x) + 2x sin(x) + 2 cos(x) + C ,

where C is the constant of integration.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Integration by Parts for Definite Integrals

Integration by Parts Formula for Definite Integrals

Let f (x) and g(x) be functions with continuous derivatives on [a, b]. Then∫ b

a
f (x)g ′(x) dx = f (x)g(x)

∣∣∣b
a
−
∫ b

a
g(x)f ′(x) dx .

If we denote u = f (x) and v = g(x), then it becomes

(∗∗)
∫ b

a
u dv = uv

∣∣∣b
a
−
∫ b

a
v du,

where the bounds of integration and substitution are specified for the
variable x .
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Finding the Area of a Region

Problem: Find the area of the region bounded above by the graph of
y = arctan(x) and below by the x-axis over the interval [0, 1].

1 This region is shown in Figure. To find the area, we must evaluate∫ 1
0 arctan(x) dx .

2 This figure is the graph of the inverse tangent function. It is an
increasing function that passes through the origin. In the first
quadrant, there is a shaded region under the graph, above the x-axis.
The shaded area is bounded to the right at x = 1.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Finding the Area of a Region (cont’d)

3 For this integral, let’s choose u = arctan(x) and dv = dx , thereby making
du = 1

x2+1dx and v = x . After applying the integration-by-parts formula
(**) for definite integrals, we obtain

Area = x arctan(x)

∣∣∣∣∣
1

0

−
∫ 1

0

x

x2 + 1
dx .

4 We use a substitution of w = 1 + x2 to evaluate
∫ 1

0
x

x2+1 dx . We have that

dw = 2x dx , and hence x dx = 1
2dw . Also, when x = 0, w = 1, and when

x = 1, w = 2. It follows that∫ 1

0

x

x2 + 1
dx =

∫ 2

1

1

2

1

w
dw =

1

2
ln |w |

∣∣∣∣∣
2

1

=
1

2
ln(2).

5 Therefore,

Area = x arctan(x)

∣∣∣∣∣
1

0

−
∫ 1

0

x

x2 + 1
dx =

π

4
− 1

2
ln(2).
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Finding the Volume of Revolution

Problem: Find the volume of the solid obtained by revolving the region
bounded by the graph of f (x) = e−x , the x-axis, the y -axis, and the line
x = 1 about the y -axis.

1 We use the cylindrical shells method to solve this problem. Begin by
sketching the region to be revolved, along with a typical rectangle.

2 This figure is the graph of the function e−x . It is an increasing function on
the left side of the y -axis and decreasing on the right side of the y -axis. The
curve also comes to a point on the y -axis at y = 1. Under the curve, there
is a shaded rectangle in the first quadrant. There is also a cylinder under the
graph, formed by revolving the rectangle around the y -axis.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Finding the Volume of Revolution (cont’d)

3 Figure We can use cylindrical shells to find the volume of revolution.
4 According to the formula, we must evaluate∫ 1

0
2πxe−x dx = 2π

∫ 1

0
xe−x dx .

5 To do this, let u = x and dv = e−x dx . These choices lead to
du = dx and v = −e−x as an antiderivative of e−x . Using integration
by parts, we obtain

Volume = 2π

∫ 1

0
xe−x dx = 2π

(
−xe−x

∣∣∣1
0
+

∫ 1

0
e−x dx

)
= −2πxe−x

∣∣∣1
0
− 2πe−x

∣∣∣1
0

= 2π − 4π

e
.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Evaluation of
∫ π

2

0 x cos(x) dx

Solution: Using integration by parts with u = x and dv = cos(x) dx , we
get:

du = dx v = sin(x)

Applying the integration by parts formula,∫
u dv = uv −

∫
v du,

we obtain:

[x sin(x)]
π
2
0 −

∫ π
2

0
sin(x) dx =

(π
2
· 1− 0 · 0

)
+ (0− (−1)) =

π

2
− 1.

Therefore, ∫ π
2

0
x cos(x) dx =

π

2
− 1.
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The Integration-by-Parts Formula Integration by Parts for Definite Integrals

Key Concepts and Key Equations

The integration-by-parts formula allows the exchange of one integral
for another, possibly easier, integral.

Integration by parts applies to both definite and indefinite integrals.

Key Equations

Integration by Parts Formula∫
u dv = uv −

∫
v du

Integration by Parts for Definite Integrals

b∫
a

u dv = uv
∣∣∣b
a
−

b∫
a

v du
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Outline

1 Integrating Products and Powers of sin(x) and cos(x)

2 Reduction Formulas
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Learning Objectives
1 Solve integration problems involving products of
powers of sin(x) and cos(x).

2 Integrate products of sines and cosines of different
angles.

3 Solve integration problems involving products of
powers of tan(x) and sec(x).

4 Use reduction formulas to evaluate trigonometric
integrals.

Math 1700 (University of Manitoba) 3.2 Trigonometric Integrals Winter 2024 3 / 32



Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

A key idea behind the strategy used to integrate combinations of powers
of sin(x) and cos(x) involves rewriting these expressions as sums and

differences of integrals of the form

∫
sinj(x) cos(x) dx or∫

cosj(x) sin(x) dx that can be evaluated using u-substitution.
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluate

∫
cos3(x) sin(x) dx .

Solution:
Make a substitution u = cos(x). In this case, du = − sin(x) dx . Thus,∫

cos3(x) sin(x) dx = −
∫

u3 du

= −1

4
u4 + C

= −1

4
cos4(x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluate

∫
sin4(x) cos(x) dx .

Answer:
1

5
sin5(x) + C

Hint: Take u = sin(x).
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

A Preliminary Example: Evaluating

∫
cosj(x) sink(x) dx

When k is Odd

Evaluate

∫
cos2(x) sin3(x) dx .

Solution: To convert this integral into a combination of integrals of the

form

∫
cosj(x) sin(x) dx , rewrite

sin3(x) = sin2(x) sin(x) = (1− cos2(x)) sin(x).
We now make a substitution u = cos(x), du = − sin(x) dx , and obtain∫

cos2(x) sin3(x) dx =

∫
cos2(x)(1− cos2(x)) sin(x) dx

= −
∫

u2(1− u2) du =

∫
(u4 − u2) du

=
1

5
u5 − 1

3
u3 + C =

1

5
cos5(x)− 1

3
cos3(x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Development of the Integral

Given the integral

∫
cos3(x) sin2(x) dx , we rewrite cos3(x) as

cos2(x) cos(x) . Then, using the identity cos2(x) = 1− sin2(x), we get:∫
cos3(x) sin2(x) dx =

∫
(1− sin2(x)) cos(x) sin2(x) dx

=

∫
(sin2(x)− sin4(x)) cos(x) dx .

Now, let’s make the substitution u = sin(x). Then, du = cos(x) dx . we
have: ∫

cos3(x) sin2(x) dx =

∫
(u2 − u4) du =

1

3
u3 − 1

5
u5 + C

=
1

3
sin3(x)− 1

5
sin5(x) + C .

So, the evaluated integral is
1

3
sin3(x)− 1

5
sin5(x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Integrating an Even Power of sin(x)

Evaluate

∫
sin2(x) dx .

Solution: To evaluate this integral, let’s use the trigonometric identity
sin2(x) = 1

2 − 1
2 cos(2x). Thus,∫

sin2(x) dx =

∫ (
1

2
− 1

2
cos(2x)

)
dx

=
1

2
x − 1

4
sin(2x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Development of the Integral

Given the integral

∫
cos2(x) dx , we can use the trigonometric identity

cos2(x) = 1
2 + 1

2 cos(2x). Thus, we have:∫
cos2(x) dx =

∫ (
1

2
+

1

2
cos(2x)

)
dx

=
1

2

∫
dx +

1

2

∫
cos(2x) dx

=
1

2
x +

1

4
sin(2x) + C .

So, the evaluated integral is
1

2
x +

1

4
sin(2x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Problem-Solving Strategy: Integrating Products of Powers
of sin(x) and cos(x)

To evaluate

∫
cosj(x) sink(x) dx , use the following strategies:

1 If k is odd, rewrite sink(x) = sink−1(x) sin(x) and use the identity
sin2(x) = 1− cos2(x) to rewrite sink−1(x) in terms of cos(x). Integrate
using the substitution u = cos(x). This substitution makes du = − sin(x) dx .

2 If j is odd, rewrite cosj(x) = cosj−1(x) cos(x) and use the identity
cos2(x) = 1− sin2(x) to rewrite cosj−1(x) in terms of sin(x). Integrate
using the substitution u = sin(x). This substitution makes du = cos(x) dx .

3 If both j and k are even, use identities sin2(x) = 1
2 (1− cos(2x)) and

cos2(x) = 1
2 (1 + cos(2x)). After applying these formulas, simplify and

reapply strategies 2 and 3 to the combination of powers of cos(2x) as
appropriate.

(Note: If both j and k are odd, either strategy 1 or strategy 2 may be used.)
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating
∫
cosj(x) sink(x) dx When j is Odd

Evaluate A=

∫
cos5(x) sin8(x) dx .

Solution: Since the power on cos(x) is odd, use strategy 2.

A =

∫
cos4(x) sin8(x) cos(x) dx Break off cos(x).

=

∫
(cos2(x))

2
sin8(x) cos(x) dx Rewrite cos4(x) = (cos2(x))

2
.

=

∫
(1− sin2(x))

2
sin8(x) cos(x) dx Substitute cos2(x) = 1− sin2(x).

=

∫
(1− u2)

2
u8 du Let u = sin(x) and du = cos(x) dx .

=

∫
(u8 − 2u10 + u12) du Expand.

=
1

9
u9 − 2

11
u11 +

1

13
u13 + C Evaluate the integral.

=
1

9
sin9(x)− 2

11
sin11(x) +

1

13
sin13(x) + C . Substitute u = sin(x).
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating
∫
cosj(x) sink(x) dx When k and j are Even

Evaluate A=

∫
sin4(x) dx .

Solution: Since both the powers of sin(x) and cos(x) are even (k = 4, j = 0), we must
use strategy 3. Thus,

A =

∫
(sin2(x))

2
dx Rewrite sin4(x) = (sin2(x))

2
.

=

∫ (
1

2
− 1

2
cos(2x)

)2

dx Substitute sin2(x) =
1

2
− 1

2
cos(2x).

=

∫ (
1

4
− 1

2
cos(2x) +

1

4
cos2(2x)

)
dx Expand

(
1

2
− 1

2
cos(2x)

)2

.

Since cos2(2x) has an even power, we use strategy 3 again and cos2(2x) = 1
2
+ 1

2
cos(4x)

=

∫ (
1

4
− 1

2
cos(2x) +

1

4

(
1

2
+

1

2
cos(4x)

))
dx

=

∫ (
3

8
− 1

2
cos(2x) +

1

8
cos(4x)

)
dx Simplify.

=
3

8
x − 1

4
sin(2x) +

1

32
sin(4x) + C . Evaluate the integral.

Math 1700 (University of Manitoba) 3.2 Trigonometric Integrals Winter 2024 12 / 32



Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Problem Statement

Evaluate

∫
cos3(x) dx .

Hint: Use strategy 2. Write cos3(x) = cos2(x) cos(x) and substitute
cos2(x) = 1− sin2(x).

Answer: sin(x)− 1

3
sin3(x) + C
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Problem Statement

Evaluate

∫
cos3(x) dx .

Hint: Use strategy 2. Write cos3(x) = cos2(x) cos(x) and substitute
cos2(x) = 1− sin2(x).

Answer: sin(x)− 1

3
sin3(x) + C
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Solution

Problem: Evaluate

∫
cos2(3x) dx .

Hint: Use strategy 3 and substitute cos2(3x) = 1
2 + 1

2 cos(6x).

Solution: ∫
cos2(3x) dx =

∫ (
1

2
+

1

2
cos(6x)

)
dx

=
1

2

∫
dx +

1

2

∫
cos(6x) dx

=
1

2
x +

1

12
sin(6x) + C

So, the solution is
1

2
x +

1

12
sin(6x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Solution

Problem: Evaluate

∫
cos2(3x) dx .

Hint: Use strategy 3 and substitute cos2(3x) = 1
2 + 1

2 cos(6x).
Solution: ∫

cos2(3x) dx =

∫ (
1

2
+

1

2
cos(6x)

)
dx

=
1

2

∫
dx +

1

2

∫
cos(6x) dx

=
1

2
x +

1

12
sin(6x) + C

So, the solution is
1

2
x +

1

12
sin(6x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Integrating Products of Sines and Cosines of Different
Angles

To integrate products involving sin(ax), sin(bx), cos(ax), and cos(bx), use
the following identities:

sin(ax) sin(bx) = 1
2 cos

(
(a− b)x

)
− 1

2 cos
(
(a+ b)x

)
sin(ax) cos(bx) = 1

2 sin
(
(a− b)x

)
+ 1

2 sin
(
(a+ b)x

)
cos(ax) cos(bx) = 1

2 cos
(
(a− b)x

)
+ 1

2 cos
(
(a+ b)x

)
These identities are helpful when dealing with integrals involving products
of trigonometric functions with different angles.
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
sin(ax) cos(bx) dx

To evaluate

∫
sin(ax) cos(bx) dx , we can use the identity:

sin(ax) cos(bx) =
1

2
sin((a− b)x) +

1

2
sin((a+ b)x)

Solution:∫
sin(5x) cos(3x) dx =

∫ (
1

2
sin(2x) +

1

2
sin(8x)

)
dx

= −1

4
cos(2x)− 1

16
cos(8x) + C

So,

∫
sin(5x) cos(3x) dx = −1

4
cos(2x)− 1

16
cos(8x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
cos(6x) cos(5x) dx

To evaluate

∫
cos(6x) cos(5x) dx , we can use the hint provided:

cos(6x) cos(5x) =
1

2
cos(x) +

1

2
cos(11x)

Solution:∫
cos(6x) cos(5x) dx =

∫ (
1

2
cos(x) +

1

2
cos(11x)

)
dx

=
1

2
sin(x) +

1

22
sin(11x) + C

So,

∫
cos(6x) cos(5x) dx =

1

2
sin(x) +

1

22
sin(11x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
cos(6x) cos(5x) dx

To evaluate

∫
cos(6x) cos(5x) dx , we can use the hint provided:

cos(6x) cos(5x) =
1

2
cos(x) +

1

2
cos(11x)

Solution:∫
cos(6x) cos(5x) dx =

∫ (
1

2
cos(x) +

1

2
cos(11x)

)
dx

=
1

2
sin(x) +

1

22
sin(11x) + C

So,

∫
cos(6x) cos(5x) dx =

1

2
sin(x) +

1

22
sin(11x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Integrating Products and Powers of tan(x) and sec(x)

Before discussing the integration of products of powers of tan(x) and
sec(x), it is useful to recall the integrals involving tan(x) and sec(x) we
have already learned: ∫

sec2(x) dx = tan(x) + C ,

∫
sec(x) tan(x) dx = sec(x) + C ,

∫
tan(x) dx = ln | sec(x)|+ C ,

∫
sec(x) dx = ln | sec(x) + tan(x)|+ C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
secj(x) tan(x) dx

To evaluate

∫
secj(x) tan(x) dx , we can rewrite sec5(x) tan(x) as

sec4(x) sec(x) tan(x). If we let u = sec(x), then du = sec(x) tan(x) dx ,
and so ∫

sec5(x) tan(x) dx =

∫
sec4(x) sec(x) tan(x) dx

=

∫
u4 du

=
1

5
u5 + C

=
1

5
sec5(x) + C .

So,

∫
sec5(x) tan(x) dx =

1

5
sec5(x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
tan5(x) sec2(x) dx

To evaluate

∫
tan5(x) sec2(x) dx , we can use the hint provided:

Let u = tan(x) and du = sec2(x) dx .
Solution: ∫

tan5(x) sec2(x) dx =

∫
u5 du

=
1

6
u6 + C

=
1

6
tan6(x) + C

So,

∫
tan5(x) sec2(x) dx =

1

6
tan6(x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Problem-Solving Strategy: Evaluating

∫
tank(x) secj(x) dx

To evaluate

∫
tank(x) secj(x) dx , use the following strategies:

If j is even and j ≥ 2, rewrite secj(x) = secj−2(x) sec2(x) and use
sec2(x) = tan2(x) + 1 to rewrite secj−2(x) in terms of tan(x). Let
u = tan(x) and du = sec2(x).

If k is odd and j ≥ 1, rewrite
tank(x) secj(x) = tank−1(x) secj−1(x) sec(x) tan(x) and use
tan2(x) = sec2(x)− 1 to express tank−1(x) in terms of sec(x). Let
u = sec(x) and du = sec(x) tan(x) dx .

If k is even and j is odd, then use tan2(x) = sec2(x)−1 to express tank(x) in
terms of sec(x). Use integration by parts to integrate odd powers of sec(x).
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
tan6(x) sec4(x) dx When j is Even

Since the power on sec(x) is even, rewrite sec4(x) = sec2(x) sec2(x) and use
sec2(x) = tan2(x) + 1 to express the first sec2(x) in terms of tan(x). We now
make a substitution u = tan(x), in which case du = sec2(x) dx , and we obtain∫

tan6(x) sec4(x) dx =

∫
tan6(x)(tan2(x) + 1) sec2(x)dx

=

∫
u6(u2 + 1)du

=

∫
(u8 + u6)du

=
1

9
u9 +

1

7
u7 + C

=
1

9
tan9(x) +

1

7
tan7(x) + C .

So,

∫
tan6(x) sec4(x) dx =

1

9
tan9(x) +

1

7
tan7(x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
tan5(x) sec3(x) dx When k is Odd

Since the power of tan(x) is odd, we begin by rewriting
tan5(x) sec3(x) = tan4(x) sec2(x) sec(x) tan(x). We then notice that
tan4(x) = (tan2(x))2 = (sec2(x)− 1)2, and make a substitution u = sec(x) with
du = sec(x) tan(x) dx . With this, we obtain∫

tan5(x) sec3(x) dx =

∫
(sec2(x)− 1)2 sec2(x) sec(x) tan(x) dx

=

∫
(u2 − 1)2u2 du

=

∫
(u6 − 2u4 + u2) du

=
1

7
u7 − 2

5
u5 +

1

3
u3 + C

=
1

7
sec7(x)− 2

5
sec5(x) +

1

3
sec3(x) + C .

So,

∫
tan5(x) sec3(x) dx =

1

7
sec7(x)− 2

5
sec5(x) +

1

3
sec3(x) + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
tan3(x) dx

Although there is no sec(x) under the integral, we can still use the strategy
outlined above for the case when the power k of tan(x) is odd. For this, we will
need to multiply and divide the integrand by sec(x):

tan3(x) =
sec(x) tan3(x)

sec(x)
=

1

sec(x)
tan3(x) sec(x)

=
1

sec(x)
tan2(x) sec(x) tan(x) =

sec2(x)− 1

sec(x)
sec(x) tan(x).

Hence, using the substitution u = sec(x), we obtain∫
tan3(x) dx =

∫
sec2(x)− 1

sec(x)
sec(x) tan(x) dx

=

∫
u2 − 1

u
du =

∫ (
u − 1

u

)
du

=
1

2
u2 − ln |u|+ C =

1

2
sec2(x)− ln | sec(x)|+ C .

Math 1700 (University of Manitoba) 3.2 Trigonometric Integrals Winter 2024 24 / 32



Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
sec3(x) dx

Integrate

∫
sec3(x) dx . Solution: This integral requires integration by parts.

Let u = sec(x) and dv = sec2(x) dx . These choices make du = sec(x) tan(x) dx
and v = tan(x). Thus,∫

sec3(x) dx = sec(x) tan(x)−
∫

tan(x) sec(x) tan(x) dx

= sec(x) tan(x)−
∫

tan2(x) sec(x) dx (Simplify)

= sec(x) tan(x)−
∫

(sec2(x)− 1) sec(x) dx (Substitute tan2(x) = sec2(x)− 1)

= sec(x) tan(x) +

∫
sec(x) dx −

∫
sec3(x) dx (Rewrite)

= sec(x) tan(x) + ln | sec(x) + tan(x)| −
∫

sec3(x) dx (Evaluate

∫
sec(x) dx).
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Evaluating

∫
sec3(x) dx (continued)

We now have∫
sec3(x) dx = sec(x) tan(x) + ln | sec(x) + tan(x)| −

∫
sec3(x) dx .

We see that the last integral is the same as the original one. Let I be a particular

antiderivative of sec3(x). Substituting I instead of

∫
sec3(x) dx into the above equality:

I = sec(x) tan(x) + ln | sec(x) + tan(x)| − I .

Adding I to both sides, we obtain

2I = sec(x) tan(x) + ln | sec(x) + tan(x)|.
Dividing by 2, we arrive at

I =
1

2
sec(x) tan(x) +

1

2
ln | sec(x) + tan(x)|.

we obtain that

∫
sec3(x) dx = I + C =

1

2
sec(x) tan(x) +

1

2
ln | sec(x) + tan(x)|+ C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Reduction Formulas for
∫
secn(x) dx and

∫
tann(x) dx

∫
secn(x) dx =

1

n − 1
secn−2(x) tan(x) +

n − 2

n − 1

∫
secn−2(x) dx

∫
tann(x) dx =

1

n − 1
tann−1(x)−

∫
tann−2(x) dx
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Revisiting
∫
sec3(x) dx

Apply a reduction formula to evaluate
∫
sec3(x) dx .

Solution:
By applying the first reduction formula with n = 3, we obtain∫

sec3(x) dx

=
1

3− 1
sec3−2(x) tan(x) +

3− 2

3− 1

∫
sec3−2(x) dx

=
1

2
sec(x) tan(x) +

1

2
ln | sec(x) + tan(x)|+ C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Revisiting
∫
sec3(x) dx

Apply a reduction formula to evaluate
∫
sec3(x) dx .

Solution:
By applying the first reduction formula with n = 3, we obtain∫

sec3(x) dx

=
1

3− 1
sec3−2(x) tan(x) +

3− 2

3− 1

∫
sec3−2(x) dx

=
1

2
sec(x) tan(x) +

1

2
ln | sec(x) + tan(x)|+ C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Using a Reduction Formula

Evaluate
∫
tan4(x) dx .

Solution:
Applying the second reduction formula with n = 4, we obtain∫

tan4(x) dx =
1

4− 1
tan4−1(x)−

∫
tan4−2(x) dx .

To evaluate
∫
tan2(x) dx , we apply the second reduction formula with

n = 2, which allows us to continue the chain of equalities as follows:

∫
tan4(x) dx =

1

3
tan3(x)−

∫
tan2(x) dx

=
1

3
tan3(x)−

(
1

2− 1
tan2−1(x)−

∫
tan2−2(x) dx

)
=

1

3
tan3(x)− tan(x) +

∫
1 dx =

1

3
tan3(x)− tan(x) + x + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Using a Reduction Formula

Evaluate
∫
tan4(x) dx . Solution:

Applying the second reduction formula with n = 4, we obtain∫
tan4(x) dx =

1

4− 1
tan4−1(x)−

∫
tan4−2(x) dx .

To evaluate
∫
tan2(x) dx , we apply the second reduction formula with

n = 2, which allows us to continue the chain of equalities as follows:

∫
tan4(x) dx =

1

3
tan3(x)−

∫
tan2(x) dx

=
1

3
tan3(x)−

(
1

2− 1
tan2−1(x)−

∫
tan2−2(x) dx

)
=

1

3
tan3(x)− tan(x) +

∫
1 dx =

1

3
tan3(x)− tan(x) + x + C .
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Applying the Reduction Formula

Apply the reduction formula to
∫
sec5(x) dx .

Answer: ∫
sec5(x) dx =

1

4
sec3(x) tan(x)− 3

4

∫
sec3(x) dx
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Applying the Reduction Formula

Apply the reduction formula to
∫
sec5(x) dx .

Answer: ∫
sec5(x) dx =

1

4
sec3(x) tan(x)− 3

4

∫
sec3(x) dx

Math 1700 (University of Manitoba) 3.2 Trigonometric Integrals Winter 2024 30 / 32



Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Key Concepts

Integrals of trigonometric functions can be evaluated using various
strategies. These strategies include the following:

1 Applying trigonometric identities to rewrite the integrand so that it
may be evaluated via an appropriate substitution.

2 Using integration by parts.

3 Applying trigonometric identities to rewrite products of sines and
cosines with different arguments as the sum of individual sine and
cosine functions.

4 Applying reduction formulas.

Understanding and mastering these techniques enables one to effectively
evaluate integrals involving trigonometric functions and solve a wide range
of mathematical problems.
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Integrating Products and Powers of sin(x) and cos(x) Reduction Formulas

Key Equations

Sine Products

sin(ax) sin(bx) =
1

2
cos((a− b)x)− 1

2
cos((a+ b)x)

Sine and Cosine Products

sin(ax) cos(bx) =
1

2
sin((a− b)x) +

1

2
sin((a+ b)x)

Cosine Products

cos(ax) cos(bx) =
1

2
cos((a− b)x) +

1

2
cos((a+ b)x)

Power Reduction Formula for Secant∫
secn(x) dx =

1

n − 1
secn−1(x) +

n − 2

n − 1

∫
secn−2(x) dx

Power Reduction Formula for Tangent∫
tann(x) dx =

1

n − 1
tann−1(x)−

∫
tann−2(x) dx
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Outline

1 Integrals Involving
√
a2 − x2

2 Integrating Expressions Involving
√
a2 + x2

3 Integrating Expressions Involving
√
x2 − a2
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Learning Objectives

Solve integration problems involving the square root of a sum or difference
of two squares.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Problem-Solving Strategy: Integrating Expressions

Involving
√
a2 − x2

It is a good idea to make sure the integral cannot be evaluated easily
in another way. For example, although this method can be applied to
integrals of the form

∫
x√

a2−x2
dx and

∫
x
√
a2 − x2 dx , they can each

be integrated directly by a simple substitution.

Make the substitution x = a sin(θ) and dx = a cos(θ)dθ.

Note: This substitution yields
√
a2 − x2 = a cos(θ).

Simplify the expression.

Evaluate the integral using techniques from the section on
trigonometric integrals.

You may also need to use some trigonometric identities and the
relationship θ = sin−1

(
x
a

)
.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Integrating an Expression Involving
√
a2 − x2

Evaluate
∫ √

4− x2 dx .
Solution:
Begin by making the substitutions x = 2 sin(θ) and dx = 2 cos(θ)dθ.
Since sin(θ) = x

2 , we can construct the reference triangle shown in the
following figure.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Integrating an Expression Involving
√
a2 − x2

Evaluate

∫ √
4− x2

x
dx .

Solution: First make the substitutions x = 2 sin(θ) and dx = 2 cos(θ)dθ.
Since sin(θ) = x

2 , we can construct the reference triangle shown in Figure
3 below.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Integrating an Expression Involving
√
a2 − x2 Two Ways

Method 1: Using the substitution u = 1− x2

Solution: Let u = 1− x2, hence x2 = 1− u. Thus, du = −2x dx . In this
case, the integral becomes

∫
x3
√

1− x2 dx = −1

2

∫
x2
√
1− x2(−2x dx) (Make the substitution)

= −1

2

∫
(1− u)

√
u du (Expand the expression)

= −1

2

∫
(u1/2 − u3/2) du (Evaluate the integral)

= −1

2

(
2

3
u3/2 − 2

5
u5/2

)
+ C (Rewrite in terms of x)

= −1

3
(1− x2)3/2 +

1

5
(1− x2)5/2 + C .
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Integrating an Expression Involving
√
a2 − x2 Two Ways

Method 2: Using trigonometric substitution x = sin(θ)

Solution: Let x = sin(θ). In this case, dx = cos(θ)dθ. Using this
substitution, we have∫

x3
√
1− x2 dx =

∫
sin3(θ) cos2(θ) dθ

=

∫
(1− cos2(θ)) cos2(θ) sin(θ) dθ (Let u = cos(θ))

=

∫
(u4 − u2) du

=
1

5
u5 − 1

3
u3 + C (Substitute u = cos(θ))

=
1

5
cos5(θ)− 1

3
cos3(θ) + C (Use a reference triangle to see that cos(θ) =

√
1− x2)

=
1

5
(1− x2)5/2 − 1

3
(1− x2)3/2 + C .

Math 1700 (University of Manitoba) 3.3 Trigonometric Substitution Winter 2024 8 / 24



Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Integrating an Expression
Using Trigonometric Substitution

Rewrite the integral: ∫
x3√

25− x2
dx

Answer: ∫
125 sin3(θ) dθ

Hint: Substitute x = 5 sin(θ) and dx = 5 cos(θ)dθ.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Problem-Solving Strategy: Integrating Expressions

Involving
√
a2 + x2

Check to see whether the integral can be evaluated easily by using another
method. In some cases, it is more convenient to use an alternative method.
Substitute x = a tan(θ) and dx = a sec2(θ) dθ. This substitution yields:√

a2 + x2 =

√
a2 + (a tan(θ))2 =

√
a2 (1 + tan2(θ))

=
√

a2 sec2(θ) = |a sec(θ)| = a sec(θ).

(Since −π
2
< θ < π

2
and sec(θ) > 0 over this interval, |a sec(θ)| = a sec(θ).)

Simplify the expression.

Evaluate the integral using techniques from the section on trigonometric integrals.

Use the reference triangle from to rewrite the result in terms of x . You may also
need to use some trigonometric identities and the relationship θ = tan−1

(
x
a

)
.

(Note: The reference triangle is based on the assumption that x > 0; however, the
trigonometric ratios produced from the reference triangle are the same as the
ratios for which x ≤ 0.)
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Math 1700 (University of Manitoba) 3.3 Trigonometric Substitution Winter 2024 11 / 24



Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Integrating an Expression Involving
√
a2 + x2

Evaluate
∫

dx√
1+x2

Solution: Begin with the substitution x = tan(θ) and dx = sec2(θ) dθ. Since
tan(θ) = x , draw the reference triangle in the following figure.

This figure is a right triangle. It has an angle labeled θ. This angle is opposite the
vertical side. The hypotenuse is labeled

√
1 + x2, the vertical leg is labeled x , and the

horizontal leg is labeled 1. To the left of the triangle is the equation tan(θ) = x/1.
Thus,

∫
dx√
1 + x2

=

∫
sec2(θ)

sec(θ)
dθ (Substitute x = tan(θ) and dx = sec2(θ)dθ. This substitution makes

√
1 + x2 = sec(θ). Simplify.)

=

∫
sec(θ)dθ (Evaluate the integral.)

= ln | sec(θ) + tan(θ)|+ C (Use the reference triangle to express the result in terms of x .)

= ln |
√

1 + x2 + x |+ C .
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Checking the Solution by Differentiation

To check the solution, differentiate:

d

dx

(
ln |

√
1 + x2 + x |

)
=

1√
1 + x2 + x

·
(

x√
1 + x2

+ 1

)
=

1√
1 + x2 + x

· x +
√
1 + x2√

1 + x2

=
1√

1 + x2
.

Since
√
1 + x2 + x > 0 for all values of x , we could rewrite

ln |
√
1 + x2 + x |+ C as ln(

√
1 + x2 + x) + C , if desired.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Evaluating
∫

dx√
1+x2

Using a Different Substitution
Using x = sinh(θ)

Solution: Because sinh(θ) has a range of all real numbers, and 1 + sinh2(θ) = cosh2(θ),
we may also use the substitution x = sinh(θ) to evaluate this integral. In this case,
dx = cosh(θ)dθ. Consequently,

∫
dx√
1 + x2

=

∫
cosh(θ)√
1 + sinh2(θ)

dθ (Substitute x = sinh(θ) and dx = cosh(θ)dθ. This substitution makes
√

1 + x2 = cosh(θ). Simplify.)

=

∫
cosh(θ)√
cosh2(θ)

dθ =

∫
cosh(θ)

| cosh(θ)|dθ (
√

cosh2(θ) = | cosh(θ)|)

=

∫
cosh(θ)

cosh(θ)
dθ (| cosh(θ)| = cosh(θ) since cosh(θ) > 0 for all θ)

=

∫
1 dθ (Simplify.)

= θ + C (Evaluate the integral. Since x = sinh(θ), we know θ = sinh−1(x).)

= sinh−1(x) + C .
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Analysis: Comparison of Solutions

This answer looks quite different from the answer obtained using the substitution
x = tan(θ). To see that the solutions are the same, set y = sinh−1(x). Then sinh y = x ,
that is,

ey − e−y

2
= x .

After multiplying both sides by 2ey and rewriting, this equation becomes:

e2y − 2xey − 1 = 0.

Use the quadratic equation formula to solve for ey :

ey =
2x ±

√
4x2 + 4

2
.

Simplifying, we have:

ey = x ±
√

x2 + 1.

Since x −
√
x2 + 1 < 0, it must be the case that ey = x +

√
x2 + 1. Therefore,

y = ln
(
x +

√
x2 + 1

)
.

At last, we obtain:

sinh−1 x = ln
(
x +

√
x2 + 1

)
.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Analysis: Comparison of Solutions (Continued)

After we make the final observation that, since x +
√
x2 + 1 > 0,

ln
(
x +

√
x2 + 1

)
= ln

∣∣∣√1 + x2 + x
∣∣∣ ,

we see that the two different methods produced the same solutions.
Conclusion: The solutions obtained using the substitutions x = tan(θ)
and x = sinh(θ) are equivalent. Although they may appear different at
first glance, they lead to the same result after careful analysis and
simplification.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Finding an Arc Length

Problem: Find the length of the curve y = x2 over the interval
[
0, 1

2

]
.

Solution: Because dy
dx

= 2x , the arc length is given by

Arc Length =

∫ b

a

√
1 + [f ′(x)]2dx =

∫ 1
2

0

√
1 + (2x)2 dx =

∫ 1
2

0

√
1 + 4x2 dx .

To evaluate this integral, use the substitution x = 1
2
tan(θ) and dx = 1

2
sec2(θ)dθ. We

also need to change the limits of integration. If x = 0, then θ = 0 and if x = 1
2
, then

θ = π
4
. Thus,∫ 1

2

0

√
1 + 4x2 dx =

∫ π
4

0

√
1 + tan2(θ) · 1

2
sec2(θ) dθ =

1

2

∫ π
4

0

sec3(θ) dθ

=
1

2

(
1

2
sec(θ) tan(θ) +

1

2
ln | sec(θ) + tan(θ)|

) ∣∣∣∣∣
π
4

0

=
1

4

(√
2 + ln

(√
2 + 1

))
.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Rewriting the Integral

Problem: Rewrite
∫
x3
√
x2 + 4 dx by using a substitution involving

tan(θ).

Answer: We use the substitution x = 2 tan(θ) and
dx = 2 sec2(θ)dθ. Thus,∫

x3
√
x2 + 4 dx =

∫
(2 tan(θ))3

√
(2 tan(θ))2 + 4 · 2 sec2(θ) dθ

= 32

∫
tan3(θ) sec3(θ) dθ.

Hint: Use x = 2 tan(θ) and dx = 2 sec2(θ)dθ.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Rewriting the Integral

Problem: Rewrite
∫
x3
√
x2 + 4 dx by using a substitution involving

tan(θ). Answer: We use the substitution x = 2 tan(θ) and
dx = 2 sec2(θ)dθ. Thus,∫

x3
√

x2 + 4 dx =

∫
(2 tan(θ))3

√
(2 tan(θ))2 + 4 · 2 sec2(θ) dθ

= 32

∫
tan3(θ) sec3(θ) dθ.

Hint: Use x = 2 tan(θ) and dx = 2 sec2(θ)dθ.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Problem-Solving Strategy: Integrals Involving
√
x2 − a2

Step 1: Check to see whether the integral cannot be evaluated using another method.
If so, we may wish to consider applying an alternative technique.
Step 2: Substitute x = a sec(θ) and dx = a sec(θ) tan(θ)dθ. This substitution yields√

x2 − a2 =

√
(a sec(θ))2 − a2 =

√
a2 (sec2(θ)− 1) =

√
a2tan2(θ)

= a| tan(θ)|.

For x ≥ a, we have θ ∈
[
0, π

2

)
, which implies that tan(θ) ≥ 0, and so

a| tan(θ)| = a tan(θ) while for x ≤ −a, θ ∈
(
π
2
, π

]
, implying that tan(θ) ≤ 0, and hence

a| tan(θ)| = −a tan(θ).
Step 3: Simplify the expression.
Step 4: Evaluate the integral using techniques from the section on trigonometric
integrals.
Step 5: Use the reference triangles to rewrite the result in terms of x . You may also
need to use some trigonometric identities and the relationship θ = sec−1

(
x
a

)
.

Note: We need both reference triangles, since the values of some of the trigonometric
ratios are different depending on whether x ≥ a or x ≤ −a.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Problem-Solving Strategy: Integrals Involving
√
x2 − a2

(continued)

Note (continued): There are also the equations sin(θ) =
√
x2−a2

x ,

cos(θ) = a
x , and tan(θ) =

√
x2−a2

a . The second triangle is in the second
quadrant, with the hypotenuse labeled −x . The horizontal leg is labeled
−a and is on the negative x-axis. The vertical leg is labeled

√
x2 − a2. To

the right of the triangle is the equation sec(θ) = x
a .
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Finding the Area of a Region

Problem: Find the area of the region between the graph of
f (x) =

√
x2 − 9 and the x-axis over the interval [3, 5].

Solution: First, sketch a rough graph of the region described in the
problem.

We can see that the area is A =
∫ 5
3

√
x2 − 9 dx . To evaluate this definite

integral, substitute x = 3 sec(θ) and dx = 3 sec(θ) tan(θ)dθ. We must also
change the limits of integration. If x = 3, then 3 = 3 sec(θ) and hence

θ = 0. If x = 5, then θ = sec−1
(
5
3

)
.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Finding the Area of a Region (continued)

After making these substitutions and simplifying, we have:

Area =

∫ 5

3

√
x2 − 9 dx =

∫ sec−1( 5
3 )

0

9tan2(θ) sec(θ)dθ (since tan2(θ) = 1− sec2(θ))

=

∫ sec−1( 5
3 )

0

9
(
sec2(θ)− 1

)
sec(θ)dθ (expand)

=

∫ sec−1( 5
3 )

0

9
(
sec3(θ)− sec(θ)

)
dθ (evaluate the integral)

=

(
9

2
ln| sec(θ) + tan(θ)|+ 9

2
sec(θ) tan(θ)

)
− 9ln| sec(θ) + tan(θ)|

∣∣∣sec−1( 5
3 )

0
(simplify)

=
9

2
sec(θ) tan(θ)− 9

2
ln| sec(θ) + tan(θ)|+ tan(θ)|

∣∣∣sec−1( 5
3 )

0
(evaluate)

= 10− 9

2
ln3.

Solution (continued): The final area of the region between the graph of
f (x) =

√
x2 − 9 and the x-axis over the interval [3, 5] is 10− 9

2
ln3.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Evaluating
∫

dx√
x2−4

Problem: Evaluate
∫

dx√
x2−4

. Assume that x > 2.

Answer: ln
∣∣∣ x2 +

√
x2−4
2

∣∣∣+ C

Hint: Substitute x = 2 sec(θ) and dx = 2 sec(θ) tan(θ)dθ.
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Integrals Involving
√

a2 − x2 Integrating Expressions Involving
√

a2 + x2 Integrating Expressions Involving
√

x2 − a2

Key Concepts

For integrals involving
√
a2 − x2, use the substitution x = a sin(θ)

and dx = a cos(θ)dθ.

For integrals involving
√
a2 + x2, use the substitution x = a tan(θ)

and dx = asec2(θ)dθ.

For integrals involving
√
x2 − a2, substitute x = a sec(θ) and

dx = a sec(θ) tan(θ)dθ.
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Some techniques The General Method Simple Quadratic Factors

Learning Objectives

Integrate a rational function using the method of
partial fractions.

Recognize simple linear factors in a rational function.

Recognize repeated linear factors in a rational
function.

Recognize quadratic factors in a rational function.
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Some techniques The General Method Simple Quadratic Factors

Informations

We have seen some techniques for integrating specific rational functions:

Integration of du
u leads to ln |u|+ C , which yields:∫

dx

ax + b
=

1

a
ln |ax + b|+ C (a ̸= 0)

Integration of dx
x2+a2

using trigonometric substitution results in:∫
dx

x2 + a2
=

1

a
tan−1

(x
a

)
+ C (a > 0)
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Some techniques The General Method Simple Quadratic Factors

Problem!

However, we still lack a technique for arbitrary polynomial quotients,
such as

∫
3x

x2−x−2
dx .

Partial fraction decomposition allows us to decompose such rational
functions into simpler forms.

It’s essential to understand the form of decomposition, dependent on
the factorization of the denominator.

Which approach when deg(P(x)) > deg(Q(x))

Remember, partial fraction decomposition applies only when
deg(P(x)) < deg(Q(x)). If not, perform long division first.
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Some techniques The General Method Simple Quadratic Factors

Integrating
∫ P(x)

Q(x) dx , where deg(P(x)) ≥ deg(Q(x))

Evaluate
∫

x2+3x+5
x+1 dx .

Solution: Since

deg(x2 +3x +5) = 2 > 1 = deg(x +1), we perform long division to obtain

x2 + 3x + 5

x + 1
= x + 2 +

3

x + 1
.

Thus, ∫
x2 + 3x + 5

x + 1
dx =

∫ (
x + 2 +

3

x + 1

)
dx

=
1

2
x2 + 2x + 3 ln |x + 1|+ C .
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Some techniques The General Method Simple Quadratic Factors

Integrating
∫ P(x)

Q(x) dx , where deg(P(x)) ≥ deg(Q(x))

Evaluate
∫

x2+3x+5
x+1 dx . Solution: Since

deg(x2 +3x +5) = 2 > 1 = deg(x +1), we perform long division to obtain

x2 + 3x + 5

x + 1
= x + 2 +

3

x + 1
.

Thus, ∫
x2 + 3x + 5

x + 1
dx =

∫ (
x + 2 +

3

x + 1

)
dx

=
1

2
x2 + 2x + 3 ln |x + 1|+ C .
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Some techniques The General Method Simple Quadratic Factors

Problem-Solving Strategy: Partial Fraction Decomposition

For each irreducible quadratic factor ax2 + bx + c that Q(x) contains, the
decomposition must include

Ax + B

ax2 + bx + c
.

For each repeated irreducible quadratic factor (ax2 + bx + c)n, the
decomposition must include

A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)2
+ · · ·+ Anx + Bn

(ax2 + bx + c)n
.

After the appropriate decomposition is determined, solve for the constants.

If using the decomposition to evaluate an integral, rewrite the integrand in
its decomposed form and evaluate it using previously developed techniques
or integration formulas.

If using the decomposition to evaluate an integral, rewrite the integrand in
its decomposed form and evaluate it using previously developed techniques
or integration formulas.
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Some techniques The General Method Simple Quadratic Factors

Evaluate
∫

x−3
x+2 dx

Answer: ∫
x − 3

x + 2
dx = x − 5 ln |x + 2|+ C

Hint: Use long division to obtain x−3
x+2 = 1− 5

x+2 .
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Some techniques The General Method Simple Quadratic Factors

Integrating Rational Functions deg(P(x)) < deg(Q(x))

To integrate
∫ P(x)

Q(x) dx , where deg(P(x)) < deg(Q(x)), we must begin by

factoring Q(x).
Nonrepeated Linear Factors:
If Q(x) can be factored as (a1x + b1)(a2x + b2) . . . (anx + bn), where each
linear factor is distinct and no factor is a constant multiple of another,
then it is possible to find constants A1,A2, . . . ,An satisfying

P(x)

Q(x)
=

A1

a1x + b1
+

A2

a2x + b2
+ · · ·+ An

anx + bn
.
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Some techniques The General Method Simple Quadratic Factors

Partial Fractions with Nonrepeated Linear Factors

Evaluate
∫

3x+2
x3−x2−2x

dx .

Solution: Since

deg(3x + 2) = 1 < 3 = deg(x3 − x2 − 2x), we begin by factoring the
denominator of the integrand. We can see that
x3 − x2 − 2x = x(x − 2)(x + 1). Thus, there are constants A, B, and C
satisfying

3x + 2

x(x − 2)(x + 1)
=

A

x
+

B

x − 2
+

C

x + 1
.

We must now find these constants. To do so, we begin by bringing the
right-hand side to a common denominator. We have:

3x + 2

x(x − 2)(x + 1)
=

A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2)

x(x − 2)(x + 1)
.

Now, we set the numerators equal to each other, obtaining

3x + 2 = A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2).

Math 1700 (University of Manitoba) 3.4 Partial Fractions Winter 2024 10 / 31



Some techniques The General Method Simple Quadratic Factors

Partial Fractions with Nonrepeated Linear Factors

Evaluate
∫

3x+2
x3−x2−2x

dx . Solution: Since

deg(3x + 2) = 1 < 3 = deg(x3 − x2 − 2x), we begin by factoring the
denominator of the integrand. We can see that
x3 − x2 − 2x = x(x − 2)(x + 1). Thus, there are constants A, B, and C
satisfying

3x + 2

x(x − 2)(x + 1)
=

A

x
+

B

x − 2
+

C

x + 1
.

We must now find these constants. To do so, we begin by bringing the
right-hand side to a common denominator. We have:

3x + 2

x(x − 2)(x + 1)
=

A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2)

x(x − 2)(x + 1)
.

Now, we set the numerators equal to each other, obtaining

3x + 2 = A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2).
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Some techniques The General Method Simple Quadratic Factors

Method of Equating Coefficients

Expand the right-hand side of (1) and then group the terms by the powers
of x to rewrite it as:

3x + 2 = (A+ B + C )x2 + (−A+ B − 2C )x + (−2A)

Equating coefficients produces the system of equations:

A+ B + C = 0
−A+ B − 2C = 3

−2A = 2
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Method of Equating Coefficients (cont’d)

To solve this system, we first observe that −2A = 2 → A = −1.
Substituting this value into the first two equations gives us the system:

B + C = 1
B − 2C = 2

Multiplying the second equation by −1 and adding the resulting equation
to the first produces:

−3C = 1

which in turn implies that C = −1
3 . Substituting this value into the

equation B + C = 1 yields B = 4
3 . Thus, solving these equations yields

A = −1, B = 4
3 , and C = −1

3 .
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Method of Strategic Substitution

The method of strategic substitution is based on the assumption that we have set
up the decomposition correctly. If the decomposition is set up correctly, then
there must be values of A, B, and C that satisfy (1) for all values of x . That is,
this equation must be true for any value of x we care to substitute into it.
Therefore, by choosing values of x carefully and substituting them into the
equation, we may find A, B, and C easily. For example, If we substitute

x = 0, the equation reduces to 2 = A(−2)(1), yields A = −1.

x = 2, the equation reduces to 8 = B(2)(3), or equivalently B = 4
3 .

x = −1 into the equation and obtain −1 = C (−1)(−3). Then C = − 1
3 .

It is important to keep in mind that if we attempt to use this method with a
decomposition that has not been set up correctly, we are still able to find values
for the constants, but these constants are meaningless. If we do opt to use the
method of strategic substitution, then it is a good idea to check the result by
recombining the terms algebraically.
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Dividing before Applying Partial Fractions

Evaluate
∫

x2+3x+1
x2−4

dx . Solution: Since deg(x2 + 3x + 1) = 2 = deg(x2 − 4),
we must perform long division of polynomials. This results in:

x2 + 3x + 1

x2 − 4
= 1 +

3x + 5

x2 − 4
.

Next, we perform partial fraction decomposition on:

3x + 5

x2 − 4
=

3x + 5

(x + 2)(x − 2)
.

We have:
3x + 5

(x − 2)(x + 2)
=

A

x − 2
+

B

x + 2
.

Thus:
3x + 5 = A(x + 2) + B(x − 2).

Solving for A and B using either method, we obtain A = 11
4 and B = 1

4 .
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Applying Partial Fractions after a Substitution

Evaluate
∫ cos(x)

sin2(x)−sin(x)
dx .

Solution: Let’s begin by letting u = sin(x). Consequently, du = cos(x) dx . After
making these substitutions, we have:∫

cos(x)

sin2(x)− sin(x)
dx =

∫
du

u2 − u
=

∫
du

u(u − 1)
.

Applying partial fraction decomposition to 1
u(u−1) gives:

1

u(u − 1)
= −1

u
+

1

u − 1
.

Therefore: ∫
cos(x)

sin2(x)− sin(x)
dx = − ln |u|+ ln |u − 1|+ C

= − ln | sin(x)|+ ln | sin(x)− 1|+ C .
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Evaluate
∫

x+1
(x+3)(x−2) dx .

Answer:
2

5
ln |x + 3|+ 3

5
ln |x − 2|+ C

Hint:
x + 1

(x + 3)(x − 2)
=

A

x + 3
+

B

x − 2

Math 1700 (University of Manitoba) 3.4 Partial Fractions Winter 2024 16 / 31



Some techniques The General Method Simple Quadratic Factors

Repeated Linear Factors
∫ P(x)

(ax+b)n

For some applications, we need to integrate rational expressions that have
denominators with repeated linear factors—that is, there is at least one
factor of the form (ax + b)n, where n is a positive integer greater than or
equal to 2. If the denominator contains the repeated linear factor
(ax + b)n, then the corresponding terms in the decomposition are:

A1

ax + b
+

A2

(ax + b)2
+ · · ·+ An

(ax + b)n
.
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Partial Fractions with Repeated Linear Factors

Evaluate
∫

x−2
(2x−1)2(x−1)

dx . Solution: We have

deg(x − 2) = 1 < 3 = deg((2x − 1)2(x − 1)), so we can proceed with the

decomposition. Since (2x − 1)2 is a repeated linear factor, the corresponding
terms in the decomposition are going to be A

2x−1 + B
(2x−1)2

, and hence

x − 2

(2x − 1)2(x − 1)
=

A

2x − 1
+

B

(2x − 1)2
+

C

x − 1
.

Bringing to a common denominator and equating the numerators, we have:

x − 2 = A(2x − 1)(x − 1) + B(x − 1) + C (2x − 1)2.

We then use the method of equating coefficients to find the values of A, B, and
C .

x − 2 = (2A+ 4C )x2 + (−3A+ B − 4C )x + (A− B + C ).

Equating coefficients yields 2A+ 4C = 0, −3A+ B − 4C = 1, and
A−B +C = −2. Solving this system we obtain that A = 2, B = 3, and C = −1.
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Partial Fractions with Repeated Linear Factors (Contd.)

Alternatively, we can use the method of strategic substitution. In this case,
substituting x = 1 and x = 1/2 into the equation easily produces the values
B = 3 and C = −1. At this point, it may seem that we have run out of good
choices for x , however, since we already have values for B and C , we can
substitute in these values and choose any x that we haven’t used yet. The value
x = 0 is a good option since it’s very easy to substitute. This way, we obtain:

−2 = A(−1)(−1) + 3(−1) + (−1)(−1)2,

and solving for A we get A = 2. Now that we have the values for A, B, and C ,
we rewrite the original integral:∫

x − 2

(2x − 1)2(x − 1)
dx =

∫ (
2

2x − 1
+

3

(2x − 1)2
− 1

x − 1

)
dx

= ln |2x − 1| − 3

2(2x − 1)
− ln |x − 1|+ C .

To integrate 3
(2x−1)2

, we make a substitution u = 2x − 1, yielding du = 2dx , and then

use the power formula to evaluate:
∫

3
(2x−1)2

dx = 3
2

∫
u−2 du.
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Partial Fraction Decomposition Setup

Set up the partial fraction decomposition for x+2
(x+3)3(x−4)2

. (Do not solve

for the coefficients or perform integration.)
Answer:

x + 2

(x + 3)3(x − 4)2
=

A

x + 3
+

B

(x + 3)2
+

C

(x + 3)3
+

D

x − 4
+

E

(x − 4)2
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Problem-Solving Strategy: Partial Fraction Decomposition

To decompose the rational function P(x)/Q(x), use the following steps:
1 Make sure that deg(P(x)) < deg(Q(x)). If not, perform long division

of polynomials.
2 Factor Q(x) into the product of linear and irreducible quadratic

factors. An irreducible quadratic is a quadratic that has no real zeros.
3 Assuming that deg(P(x)) < deg(Q(x)), the factors of Q(x)

determine the form of the decomposition of P(x)/Q(x).
If Q(x) can be factored as (a1x + b1)(a2x + b2)...(anx + bn), where
each linear factor is distinct and no factor is a constant multiple of
another, then it is possible to find constants A1,A2, ...An satisfying

P(x)

Q(x)
=

A1

a1x + b1
+

A2

a2x + b2
+ · · ·+ An

anx + bn
.

If Q(x) contains the repeated linear factor (ax + b)n, then the
decomposition must contain.

A1

ax + b
+

A2

(ax + b)2
+ · · ·+ An

(ax + b)n
.
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Problem-Solving Strategy: Partial Fraction Decomposition

For each irreducible quadratic factor ax2 + bx + c that Q(x) contains, the
decomposition must include

Ax + B

ax2 + bx + c
.

For each repeated irreducible quadratic factor (ax2 + bx + c)n, the
decomposition must include

A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)2
+ · · ·+ Anx + Bn

(ax2 + bx + c)n
.

After the appropriate decomposition is determined, solve for the constants.

If using the decomposition to evaluate an integral, rewrite the integrand in
its decomposed form and evaluate it using previously developed techniques
or integration formulas.

If using the decomposition to evaluate an integral, rewrite the integrand in
its decomposed form and evaluate it using previously developed techniques
or integration formulas.
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Rational Expressions with an Irreducible Quadratic Factor

Now let’s look at integrating a rational expression in which the
denominator contains an irreducible quadratic factor. Recall that the
quadratic ax2 + bx + c is irreducible if ax2 + bx + c = 0 has no real
zeros—that is, if b2 − 4ac < 0.
Evaluate

∫
2x−3
x3+x

dx .
Solution
Since deg(2x − 3) = 1 < 3 = deg(x3 + x), factor the denominator and
proceed with partial fraction decomposition. Because x3 + x = x(x2 + 1)
contains irreducible quadratic factor x2 + 1, include Ax+B

x2+1
as a part of the

decomposition, along with C
x for the linear term x . Thus, the

decomposition has the form

2x − 3

x(x2 + 1)
=

Ax + B

x2 + 1
+

C

x
.
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Rational Expressions with an Irreducible Quadratic Factor

After bringing to a common denominator and equating the numerators, we obtain
the equation

2x − 3 = (Ax + B)x + C (x2 + 1).

Solving for A,B, and C , we get A = 3, B = 2, and C = −3. Therefore,

2x − 3

x3 + x
=

3x + 2

x2 + 1
− 3

x
.

Substituting back into the integral, we obtain∫
2x − 3

x3 + x
dx =

∫ (
3x + 2

x2 + 1
− 3

x

)
dx

= 3

∫
x

x2 + 1
dx + 2

∫
1

x2 + 1
dx − 3

∫
1

x
dx

=
3

2
ln |x2 + 1|+ 2 tan−1 x − 3 ln |x |+ C .

In order to evaluate
∫

x
x2+1

dx , we perform a substitution u = x2 + 1. Note: We may

rewrite ln |x2 + 1| = ln(x2 + 1), if we wish to do so, since x2 + 1 > 0.
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Partial Fractions with an Irreducible Quadratic Factor 1

Evaluate
∫

dx
x3−8

. Solution Since the numerator is 1 and

deg(1) = 0 < 3 = deg(x3 − 8), we can proceed with partial fraction
decomposition. We start by factoring x3 − 8 = (x − 2)(x2 + 2x + 4). We see that
the quadratic factor x2 + 2x + 4 is irreducible since 22 − 4(1)(4) = −12 < 0.
Using the decomposition described in the problem-solving strategy, we get

1

(x − 2)(x2 + 2x + 4)
=

A

x − 2
+

Bx + C

x2 + 2x + 4
.

After bringing to a common denominator and equating the numerators, this
becomes

1 = A(x2 + 2x + 4) + (Bx + C )(x − 2).

Applying either method, we get A = 1
12 , B = − 1

12 , and C = − 1
3 .

Rewriting
∫

dx
x3−8 , we have∫

dx

x3 − 8
=

1

12

∫
1

x − 2
dx − 1

12

∫
x + 4

x2 + 2x + 4
dx .
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Partial Fractions with an Irreducible Quadratic Factor 2

We can see that ∫
1

x − 2
dx = ln |x − 2|+ C ,

but
∫

x+4
x2+2x+4

dx requires a bit more effort. Let’s begin by completing the

square in x2 + 2x + 4 to obtain

x2 + 2x + 4 = (x + 1)2 + 3.

By letting u = x + 1 and consequently du = dx , we see that∫
x + 4

x2 + 2x + 4
dx =

∫
u + 3

u2 + 3
du

=

∫
u

u2 + 3
du +

∫
3

u2 + 3
du.

Splitting the numerator apart, we get∫
u

u2 + 3
du +

∫
3

u2 + 3
du =

1

2
ln |u2 + 3|+ 3√

3
tan−1

(
u√
3

)
+ C .
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End

Replace u = x + 1

1

2
ln |x2 + 2x + 4|+

√
3 tan−1

(
x + 1√

3

)
+ C .

Substituting back into the original integral and simplifying gives∫
dx

x3 − 8
=

1

12
ln |x − 2| − 1

24
ln |x2 + 2x + 4| −

√
3

12
tan−1

(
x + 1√

3

)
+ C .

Here again, we can drop the absolute value if we wish to do so, since
x2 + 2x + 4 > 0 for all x .
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Finding a Volume

Find the volume of the solid of revolution obtained by revolving the region
enclosed by the graph of f (x) = x2

(x2+1)2
and the x-axis over the interval

[0, 1] about the y -axis.
Solution
Let’s begin by sketching the region to be revolved. From the sketch, we
see that the shell method is a good choice for solving this problem.
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Solution (Contd.)

The volume is given by

V = 2π

∫ 1

0
x · x2

(x2 + 1)2
dx = 2π

∫ 1

0

x3

(x2 + 1)2
dx

Since deg(x3) = 3 < 4 = deg((x2 + 1)2), we can proceed with partial
fraction decomposition.

x3

(x2 + 1)2
=

Ax + B

x2 + 1
+

Cx + D

(x2 + 1)2

After finding A = 1, B = 0, C = −1, and D = 0, we substitute back into
the integral:

V = π(ln(2)− 1

2
)
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Partial Fraction Decomposition Setup

We aim to find the partial fraction decomposition for the expression:

x2 + 3x + 1

(x + 2)(x − 3)2(x2 + 4)2

We express it as the sum of simpler fractions:

x2 + 3x + 1

(x + 2)(x − 3)2(x2 + 4)2
=

A

x + 2
+

B

x − 3
+

C

(x − 3)2
+
Dx + E

x2 + 4
+

Fx + G

(x2 + 4)2

Now, we need to determine the values of coefficients A, B, C , D, E , F ,
and G .
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Key Concepts

Partial fraction decomposition is a technique used to break down a
rational function into a sum of simple rational functions that can be
integrated using previously learned techniques.

When applying partial fraction decomposition, we must ensure that
the degree of the numerator is less than the degree of the
denominator. If not, we need to perform long division before
attempting partial fraction decomposition.

The form the decomposition takes depends on the type of factors in
the denominator. These types include:

Nonrepeated linear factors
Repeated linear factors
Nonrepeated irreducible quadratic factors
Repeated irreducible quadratic factors
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Learning Objectives

Evaluate an integral over an infinite interval.

Evaluate an integral over a closed interval with an infinite
discontinuity within the interval.

Use the comparison theorem to determine whether a definite integral
is convergent.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Introduction

To define the integral

∞∫
a

f (x) dx , we interpret it as the limit of the definite

integral

t∫
a

f (x) dx as t approaches infinity:

∞∫
a

f (x) dx = lim
t→∞

t∫
a

f (x) dx

In the figure below, we visually interpret this definition:
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Definition

Let f (x) be continuous over an interval [a,∞). Then

∞∫
a

f (x) dx = lim
t→∞

t∫
a

f (x) dx , provided this limit exists.

Let f (x) be continuous over an interval of the form (−∞, b]. Then

b∫
−∞

f (x) dx = lim
t→−∞

b∫
t

f (x) dx , provided this limit exists.

Convergence

If the limit exists, then the improper integral is said to converge. If the
limit does not exist, then the improper integral is said to diverge
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Definition

Let f (x) be continuous over (−∞,∞). We define

∞∫
−∞

f (x) dx =

0∫
−∞

f (x) dx +

∞∫
0

f (x) dx ,

provided that both
0∫

−∞
f (x) dx and

∞∫
0

f (x) dx converge.

If either of these two integrals is divergent, then
∞∫

−∞
f (x) dx diverges. (It

can be shown that, in fact,
∞∫

−∞
f (x) dx =

a∫
−∞

f (x) dx +
∞∫
a
f (x) dx for any

value of a.)
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Finding an Area

Determine whether the area between the graph of f (x) = 1
x and the

x-axis over the interval [1,∞) is finite or infinite.
Solution:

We first do a quick sketch of the region in question, as shown in the
following graph.

We can find the area between the curve f (x) = 1
x and the x-axis on an

infinite interval.

We can see that the area of this region is given by A =
∞∫
1

1
x dx .
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Solution

Then we have

A =

∞∫
1

1

x
dx

= lim
t→∞

t∫
1

1

x
dx Rewrite the improper integral as a limit.

= lim
t→∞

ln |x |
∣∣∣∣t
1

Find the antiderivative.

= lim
t→∞

(ln |t| − ln(1)) Evaluate the antiderivative.

= ∞ Evaluate the limit.

Since the improper integral diverges to ∞, the area of the region is infinite.
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Finding a Volume

Find the volume of the solid obtained by revolving the region
bounded by the graph of f (x) = 1

x and the x-axis over the interval
[1,∞) about the x-axis.
Solution:

The solid is shown in Figure below. Using the disk method, we see
that the volume V is

V =

∞∫
1

π[f (x)]2dx = π

∞∫
1

1

x2
dx .

The solid of revolution can be generated by rotating an infinite area about
the x-axis.
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Solution part 2

Then we have

V = π

∞∫
1

1

x2
dx = π lim

t→∞

t∫
1

1

x2
dx Rewrite as a limit.

= π lim
t→∞

(
−1

x

) ∣∣∣∣∣
t

1

Find the antiderivative.

= π lim
t→∞

(
−1

t
+ 1

)
Evaluate the antiderivative.

= π.

The improper integral converges to π. Therefore, the volume of the
solid of revolution is π.
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Chapter Opener: Traffic Accidents in a City

Probability Theory:

If accidents occur at a rate of one every 3 months, then the probability
that the time between accidents is between a and b is given by

P(a ≤ x ≤ b) =

b∫
a

f (x) dx ,

where

f (x) =

{
0 if x < 0
3e−3x if x ≥ 0
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Chapter Opener: Traffic Accidents in a City

Solution:

We need to calculate the probability as an improper integral:

P(X ≥ 8) =

∞∫
8

3e−3x dx

= lim
t→∞

t∫
8

3e−3x dx

= lim
t→∞

(−e−3x)

∣∣∣∣∣
t

8

= lim
t→∞

(−e−3t + e−24)

= e−24 ≈ 3.8× 10−11.

The value 3.8× 10−11 represents the probability of no accidents in 8
months under the initial conditions. Since this value is very, very
small, it is reasonable to conclude that the changes were effective.
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Evaluating an Improper Integral over an Infinite Interval

Evaluate

0∫
−∞

1

x2 + 4
dx . State whether the improper integral converges or

diverges.

0∫
−∞

1

x2 + 4
dx = lim

t→−∞

0∫
t

1

x2 + 4
dx Rewrite as a limit.

= lim
t→−∞

1

2
tan−1

(x
2

) ∣∣∣∣0
t

Find the antiderivative.

=
1

2
lim

t→−∞

(
tan−1(0)− tan−1

( t

2

))
Evaluate the antiderivative.

=
π

4
. Evaluate the limit and simplify.

The improper integral converges to π
4 .
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Evaluating an Improper Integral over (−∞,∞)

Evaluate

∞∫
−∞

xex dx . State whether the improper integral is

convergent or divergent.
Solution:

Start by splitting up the integral:

∞∫
−∞

xex dx =

0∫
−∞

xex dx +

∞∫
0

xex dx .

If either
0∫

−∞
xex dx or

∞∫
0

xex dx diverges, then
∞∫

−∞
xex dx diverges.

Compute each integral separately.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Continued

Solution (continued): For the first integral,

0∫
−∞

xex dx = lim
t→−∞

0∫
t

xex dx = lim
t→−∞

(xex − ex)

∣∣∣∣0
t

= lim
t→−∞

(−1− tet + et) = −1.

The first improper integral converges. For the second integral,

∞∫
0

xex dx = lim
t→∞

t∫
0

xex dx = lim
t→∞

(xex − ex)

∣∣∣∣t
0

= lim
t→∞

(tet − et + 1) = ∞.

Thus,
∞∫
0

xex dx diverges. Since this integral diverges,
∞∫

−∞
xex dx diverges

as well.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Evaluating an Improper Integral

Evaluate
∞∫
−3

e−x dx . State whether the improper integral converges

or diverges.
Answer: e3, converges

Hint:
∞∫
−3

e−x dx = lim
t→∞

t∫
−3

e−x dx
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Understanding Integrals with Infinite Discontinuities

In mathematical analysis, the concept of integration is vital for understanding the accumulation of quantities over intervals.
However, when dealing with functions that exhibit infinite discontinuities within the interval of integration, a nuanced approach
is required.

Consider an integral of the form:
∫ b

a
f (x) dx

f (x) is continuous over [a, b) but discontinuous at b.

Let’s examine the behavior of this integral as t, the upper limit of
integration, approaches b.

Since f (x) remains continuous over [a, t] for all t satisfying a < t < b, the

integral
∫ t

a
f (x) dx is well-defined for such values of t.

We define:
∫ b

a
f (x) dx = limt→b−

∫ t

a
f (x) dx provided this limit exists.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Definition

Let f (x) be continuous over [a, b). Then,

b∫
a

f (x) dx = lim
t→b−

t∫
a

f (x) dx .

Let f (x) be continuous over (a, b]. Then,

b∫
a

f (x) dx = lim
t→a+

b∫
t

f (x) dx .

If the limit exists, then the improper integral is said to converge. If the
limit does not exist, then the improper integral is said to diverge.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Definition

If f (x) is continuous over [a, b] except at a point c in (a, b), then we

define
b∫
a
f (x) dx as

b∫
a

f (x) dx =

c∫
a

f (x) dx +

b∫
c

f (x) dx ,

provided both
c∫
a
f (x) dx and

b∫
c
f (x) dx converge. If either of these two

integrals diverges, then
b∫
a
f (x) dx diverges.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Integrating a Discontinuous Integrand

Evaluate
4∫
0

1√
4−x

dx , if possible. State whether the integral

converges or diverges.
Solution: The function f (x) = 1√

4−x
is continuous over [0, 4) and

discontinuous at 4. Using the above definition, we rewrite
4∫
0

1√
4−x

dx as a:

4∫
0

1√
4−x

dx = limt→4−

t∫
0

1√
4−x

dx Rewrite as a limit.

= limt→4−
(
−2

√
4− x

) ∣∣∣t
0

Find the antiderivative.

= limt→4−
(
−2

√
4− t + 4

)
Evaluate the antiderivative.

= 4. Evaluate the limit.

Because the limit exists, the improper integral converges.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Integrating a Discontinuous Integrand

Evaluate
2∫
0

x ln(x) dx. State whether the integral converges or

diverges.
Solution: Since f (x) = x ln(x) is continuous over (0, 2] and is
discontinuous at zero, we can rewrite :

2∫
0

x ln(x) dx = lim
t→0+

2∫
t

x ln(x) dx Rewrite as a limit.

= lim
t→0+

(
1

2
x2 ln(x)− 1

4
x2
) ∣∣∣2

t
Evaluate using integration by parts.

= lim
t→0+

(
2 ln(2)− 1− 1

2
t2 ln(t) +

1

4
t2
)
. Evaluate the antiderivative.

= 2 ln(2)− 1. Evaluate the limit using L’Hôpital’s rule.

The improper integral converges.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Integrating a Discontinuous Integrand

Evaluate
1∫

−1

1
x3

dx . State whether the improper integral converges or

diverges.
Solution: Since f (x) = 1

x3
is continuous at every point of [−1, 1] except

zero, we use the corresponding definition to write

1∫
−1

1

x3
dx =

0∫
−1

1

x3
dx +

1∫
0

1

x3
dx .

Our integral converges if both integrals on the right converge. If either of
the two integrals on the right diverges, then the original integral diverges

as well. Begin with
0∫

−1

1
x3

dx :
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Solution

0∫
−1

1

x3
dx = lim

t→0−

t∫
−1

1

x3
dx Rewrite as a limit.

= lim
t→0−

(
− 1

2x2

) ∣∣∣t
−1

Find the antiderivative.

= lim
t→0−

(
− 1

2t2
+

1

2

)
Evaluate the antiderivative.

= −∞. Evaluate the limit.

Therefore,
0∫

−1

1
x3

dx diverges, and hence
1∫

−1

1
x3

dx diverges regardless of the

behavior of
1∫
0

1
x3

dx .
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Evaluating an Improper Integral

Evaluate
1∫
0

1
(1−x)3/2

dx . State whether the integral converges or

diverges.
Answer: ∞, diverges
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Comparison Property for Integrals

To see this, consider two continuous functions f (x) and g(x) satisfying 0 ≤ f (x) ≤ g(x)
for x ≥ a. In this case, we may view integrals of these functions over intervals of the
form [a, t] as areas. By the comparison property for definite integrals, we have the

relationship: 0 ≤
∫ t

a
f (x) dx ≤

∫ t

a
g(x) dx for t ≥ a.

If 0 ≤ f (x) ≤ g(x) for x ≥ a, then for t ≥ a,∫ ∞

a

f (x) dx ≤
∫ ∞

a

g(x) dx .

Thus, if
∫∞
a

f (x) dx = limt→∞
∫ t

a
f (x) dx = ∞, then∫ ∞

a

g(x) dx = lim
t→∞

∫ t

a

g(x) dx ≥ lim
t→∞

∫ t

a

f (x) dx = ∞

as well.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Comparison Theorem

Let f (x) and g(x) be continuous over [a,∞). Assume that
0 ≤ f (x) ≤ g(x) for x ≥ a.

If
∞∫
a
f (x) dx = limt→∞

t∫
a
f (x) dx = ∞, then

∞∫
a
g(x) dx = limt→∞

t∫
a
g(x) dx = ∞.

If
∞∫
a
g(x) dx = limt→∞

t∫
a
g(x) dx = L, where L is a real number, then

∞∫
a
f (x) dx = limt→∞

t∫
a
f (x) dx = M for some real number M ≤ L.

Math 1700 (University of Manitoba) 3.7 Improper Integrals Winter 2024 26 / 31



Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Applying the Comparison Theorem

Use the comparison theorem to show that
∫∞
1

1
xex dx converges.

Solution:

The integrand is continuous over [1,∞) and for x > 1:

0 ≤ 1

xex
≤ 1

ex
= e−x

So if
∫∞
1 e−x dx converges, then so does

∫∞
1

1
xex dx .

To evaluate
∫∞
1 e−x dx , first rewrite it as a limit:∫ ∞

1
e−x dx = lim

t→∞

∫ t

1
e−x dx = lim

t→∞
(−e−x)

∣∣∣∣t
1

= lim
t→∞

(−e−t + e1) = e.

Since the limit is finite,
∫∞
1 e−x dx converges, and hence, by the

comparison theorem, so does
∫∞
1

1
xex dx .
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Applying the Comparison Theorem

Use the comparison theorem to show that
∫∞
1

1
xp dx diverges for all

p < 1.
Solution:

First, note that 1
xp is continuous over [1,∞).

If p < 1, then 1
x ≤ 1

xp for all x ∈ [1,∞).

We already showed that
∫∞
1

1
x dx = ∞.

Therefore, by the comparison theorem,
∫∞
1

1
xp dx diverges for all

p < 1.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Applying the Comparison Theorem

Use the comparison theorem to show that
∫∞
e

ln(x)
x dx diverges.

Hint:
1

x
≤ ln(x)

x
on [e,∞)
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Applying the Comparison Theorem

Use the comparison theorem to show that
∫∞
1

1
xp dx diverges for all

p < 1.
Solution:

First we note that 1
xp is continuous over [1,∞). If p < 1, then

1
x ≤ 1

xp for all x ∈ [1,∞).

We already showed that
∫∞
1

1
x dx = ∞. Therefore, by the comparison

theorem,
∫∞
1

1
xp dx diverges for all p < 1.
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Integrating over an Infinite Interval Integrating a Discontinuous Function Comparison Theorem

Key Concepts and Equations

Key Concepts

Integrals of functions over infinite intervals are defined in terms of limits.

Integrals of functions over an interval for which the function has a
discontinuity at an endpoint may be defined in terms of limits.

The convergence or divergence of an improper integral may be determined
by comparing it with the value of an improper integral for which the
convergence or divergence is known.

Key Equations
∞∫
a

f (x) dx = limt→∞
t∫
a

f (x) dx

b∫
−∞

f (x) dx = limt→−∞
b∫
t

f (x) dx

∞∫
−∞

f (x) dx =
0∫

−∞
f (x) dx +

∞∫
0

f (x) dx
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